
Paris
Lyon
Aix

New York Metro
Flushing line

System level formal verification

June 2013

Authors:
Denis SABATIER

Lilian BURDY

FLUSHING I System Level Formal Verification

2

What is “system level formal
verification”?

 This is demonstrating wanted properties using only well defined rules
and assumptions

 System level: because subparts are represented by properties taken
as assumptions

 Formal: because the reasoning from those subpart properties to
wanted properties shall use only defined mathematical rules

 Verification: building the system right (validation is more a human
judgment: building the right system)

Subpart: existing
sub-system,

example relays

Subpart: on-
board computer

& software

Subpart: train
rail mechanical

behavior

Assumed
properties

Wanted
properties: no
collision, no
derailments,

no
overspeeding

Assumed
properties

Assumed
properties

And other subparts…

Obtaining wanted properties from
assumed properties with

mathematical formulation and
application of known rules only

FLUSHING I System Level Formal Verification

3

System level formal verification:
process for the Flushing project

For evolutions / other systems

Project Team (THALES / NYCT)

Finds the correct reasoning and
establishes the target safety
properties, including assumption
choice (about design / context)

B formulation
Proof with
Atelier B

Translating B
formulas into
natural language

B models + Proof files

DESIGN

B
o

o
k

o
f

as
su

m
p

ti
o

n
s

Using assumptions :
• Final validation
• Re-checking if

evolution has occurred

Inform
ation

E
xplanations

R
ec

om
m

en
da

tio
ns

R
eq

ui
re

d
as

su
m

pt
io

ns

A
ssum

ptions validation

A
dded details

R
ec

om
m

en
da

tio
ns

D

etails validation

S
pe

ci
fic

 d
et

ai
ls

System Proof Team (ClearSy)

FLUSHING I System Level Formal Verification

4

 CBTC = communication based train control
 A system with on-board computers and wayside computers

 Drives trains (automated but not driverless)

 Interfaced to the interlocking (the system that drives switches and signals)

Line 7 CBTC: role & architecture

CBTC (new, Thales Toronto)

Interlocking (modified)

Rail Control Center

Train supervision (new)

FLUSHING I System Level Formal Verification

5

 New York specificity: trip stops

FLUSHING I System Level Formal Verification

6

Line 7 CBTC: better train movements
in safety

Manual Manual Manual

CBTC CBTC CBTC CBTC CBTC CBTC

Without CBTC:

With CBTC:

Spacing / speed limit via
signals & Track circuits:
many field devices, long
train spacing

Considering worst
overrun past trip
stop: requires space

Considering worst
overrun past trip stop:
may require locking
switches beyond

Extended route
incompatibilities due to
necessity of buffer
space

CBTC trains move up to
movement authority (MAL)
front and very limited
rollback: known envelope

Spacing using these
envelopes: less devices
(only for exceptional
manual trains), more trains

Reduced overrun
space: possibility to
move switches
beyond

CBTC envelopes

Interlocked zones

Reduced overrun
space: less route
incompatibilities

 And more:
 Possibility to insert virtual signals anywhere for exceptional movements, etc.

 Only: remaining manual trains should be few…

FLUSHING I System Level Formal Verification

7

 Line 7 CBTC: train positions

 CBTC trains need to determine and communicate their position:

 Using localization transponders dispatched on the track
• Mastering Transponder footprint, delays, accuracy, crosstalks, layout & maintenance…

• First positioning after losing position: orientation determination

 Using motion determination between transponders
• Motion sensors (tachometers, accelerometers, beware slipping!)

– Flushing: 1 free axle + 1 braked only axle, tachometers
– Accelerometers to determine slips

• Accuracy is paramount for performance, knowledge of accuracy is paramount for safety

 Using track map
• Transponder positions

• Switch position (received)

 CBTC trains need to know their speed
 Radio communications

FLUSHING I System Level Formal Verification

8

 Line 7 CBTC: safe braking

 CBTC trains guarantee a movement authority limit (MAL) in front:
 Proposed by the zone controllers

 When trains accepts MALs: they should never overrun them
• As long as no MAL beyond is proposed

 Thank to safe braking: worst case braking safe prediction
 So trains trigger emergency braking when it will still stop them before the MAL

 But not too early: paramount for good performances!
 How?

 Guaranteed minimum braking on flat track (worst brake failures, worst slip
conditions) known

 Using safe determination of speed and position
• To determine distance and grades
• Grades are paramount (can double the stopping distance)
• Using well known physics to predict braking with grades from flat braking
• Beware kinetic energy hidden in heavy rotating axles
• Passenger masses not known

 Taking into account the delay to establish emergency braking
• Residual acceleration phase, coasting phase (and grades during those phases…)

 Performance optimization while remaining safe is the game here…

FLUSHING I System Level Formal Verification

9

 Chosen target safety properties

 Main chosen property:
 at all time, for each train we can define a protection zone PZ such that:

• The train is fully inside PZ, and will remain inside PZ thanks to its own braking capabilities if PZ remain
the same

– This one a bit tricky, to be detailed…
• PZ contains only locked switches and no other obstacle than the train itself
• PZs do not intersect with each other

 We also need “no over-speeding” (easier to formulate)
 Because over-speeding derailment are possible

 Because the PZ proof will need that (in “trains remain inside PZ” sub-proofs)

 We have something well defined to prove
 If we succeed to define PZ at all time and in all cases

• Describing all PZ evolutions
• So that above properties hold,
• Relying on things matching the design and the actual conditions

 Then OK.

FLUSHING I System Level Formal Verification

10

 Obtained final outputs

 At the end of the process:

 Book of assumptions: the main output

Book(s) of assumptions
in plain English

B

B models

Atelier
B proof

Proof files

Explaining in English
all that was necessary
in the proof: from
CBTC design to train
mechanics or driver
procedures…

FLUSHING I System Level Formal Verification

11

Proof should be verifiable, even
without formal methods

 Very often: design and safety are “closed”

 Relying on expert opinions
• Final conclusions available, but reasons why not fully available

 Design: important details & “reasons why” known only by few persons
• Impossibility to understand without mastering all

 Idea here: proof should be verifiable

 Like a regular mathematical proof: “everybody can read and nobody
finds a failure in the logics”

• Here: simple logics in general, assumptions are paramount
– Everything needed is called an assumption…

 Knowing the assumptions (thanks to the book of assumption), with
some clues about how to reason, the reader could re-do the proof in
its principles

• How to reason: proof path § in books of assumptions
• Using Atelier-B tool: for a computer-aided validation of the correct formal definition and correct

proof, but this should not prevent a clear, readable proof

FLUSHING I System Level Formal Verification

12

Reasoning with defined rules and
assumptions: Dijkstra example

 The famous Dijkstra example:
 Design:

 Property: placed dominos will never cover all the chessboard less the lower left and
upper right cells exactly

 The key: if B and W are the number of black / white uncovered cells, B = W all the time
• Because placing one domino always covers exactly 1 black cell, 1 white cell…
• So reaching a state where W = 2 and B = 0 is impossible

 Not a closed expert’s opinion…
 Because the action of a single operation causing B:=B-1, W:=W-1 obviously keep the

property B = W

 Very simple mathematics indeed, all is in the formulation of the assumptions
• If we define the chessboard / dominos / placing geometry with the important properties (B and W evolutions), obvious!

 Something everybody can read and verify (and not using so many cases…)

Chessboard Pile of dominos
An operation of
placing dominos
aligned with the

cells

?

FLUSHING I System Level Formal Verification

13

Reasoning with defined rules and
assumptions: route cancel example

 Cancelling a route (without trip stops / CBTC):
 If the approach zone is occupied, wait a delay T before actually unlocking the route

(and switches)

 Then no train should be on an unlocked route (wanted property)
 More precisely:

 Assumptions:
• If F is red and visible from the train (Pk>Zv), the train stops in less than Ts (delay) and Ds (distance). Including train

operator reaction time… And stay stopped after.
– Ts and Ds are shorter than T, Za or Zv

• if train is beyond F, route cancel is neutralized (train detected)
• If train is beyond Za, route cancel delay T is applied
• Train arrives from left and does not jump (Pk increasing continuously)

 Property: if Pk>F, then route remained locked
 Reasoning now possible… Simple!

F Zv Za

Pk

Train’s head position

Start of
approach

zone

Start of
signal’s
visibility

zone

Route start signal

FLUSHING I System Level Formal Verification

14

Reasoning with defined rules and
assumptions: route cancel example

 Once formulated (assumptions / target properties), things seem simple…
 But assumptions have to be carefully examined in real world:

 Assumption “route stay locked if Pk>F” is slightly wrong (in fact: if Pk>F+delta1)

 Assumption about signal visibility ending at F is slightly wrong (in fact: end at F-delta2)

 Problem if route cancel when train stays in F-delta2, F+delta1
• Some CBTC drop position if a train stay here too long…

 Well defined, formulated assumptions can and must be confronted with reality
 Thanks to their precise definition

Track circuit limit must
be positioned very
near the signal…

Real head position for
detection on route…

Real head position for
limit of signal visibility

FLUSHING I System Level Formal Verification

15

Reasoning with defined rules and
assumptions: route cancel example

 In fact, reasoning for “if Pk>F route not unlocked” very simple (apart from the previous trap):
 Starting from a situation with green signal and train before Za, Zv

 Let t0 be the signal cancel time

 If train before Zv at t0, train stops before Zv+Ds (before signal), Pk never beyond F

 If train at t0 is beyond Zv: train will stop before t0+Ts, so before t0+T (route not yet unlocked)
• If the train is stopped beyond F: route never destroyed
• If the train is stopped before F: Pk never beyond F

 No complex mathematics involved
 Although involved formal tools to force full formal definition & proof correctness

 If complex mathematics are needed:
• Usually means that we are trying to re-prove the scientific result used in the design… => No.

 The most important action: requesting properties to be obtained from well defined
assumptions via logical rules only leads to:
 Well defined (verifiable) assumptions

 Well known “know why”

F Zv Za

Pk

FLUSHING I System Level Formal Verification

16

 Different types of assumptions

 CBTC design assumptions:

 Software design assumptions

 Hardware design assumptions

 Context assumptions: all other assumptions

 Assumptions about external systems (example interlocking)
• Assume the global behavior properties only

– Such properties could be proven, but only by going into the external system’s design

 Assumptions about how trains or people behave
• Consequences of physical laws and probabilities

– Example: both tachometers equipped wheels will not slip together
 Because 1 free, 1 braked only. OK, but…
 Proof done under this assumption (even though CBTC design includes this case)

 Known physical laws
• Introduced in the proof as assumptions

 Everything is called “assumption” here…

FLUSHING I System Level Formal Verification

17

 Methodology: choosing assumptions

 Choosing assumptions and finding the correct reasoning are
linked processes

 Realistic assumptions matching the design and conditions: expert

knowledge
• previous example: visibility zone and detection zone

 Finding “why it works” is replaying the designer’s reasoning (again

expert knowledge)
• Example: dimensioning Za, Zv and T

 Communication with experts is paramount

 No re-inventing

 The proof team should add the rigor and well-defineness in

existing elements

FLUSHING I System Level Formal Verification

18

 Finding why it works: methodology

 Methodology to “Find the correct reasoning”:
 “animate” the system via scenarios, seeking to brake the property (in

our example : seeking train collisions)
• Find out missing design details to do these animations

– Thus selecting only the relevant details (out of all design details)

 Find why scenarios leading to collision do not work
• Find intermediate properties
• Assumptions to remove collision in context considered unrealistic

 Prove intermediate properties leading to global property

 Need for a “natural language proof” phase first
 Priority: communication with designers / experts

• Finding the correct reasoning
• Finding realistic assumptions
• Targeting at formulation without spending time at that stage

 Note: formal methods used to force full formulation and to detect any
error, not to find the correct reasoning

FLUSHING I System Level Formal Verification

19

 Global methodology

For evolutions / other systems

Project Team (THALES / NYCT)

Finds the correct reasoning and
establishes the target safety
properties, including assumption
choice (about design / context)

B formulation
Proof with
Atelier B

Translating B
formulas into
natural language

B models + Proof files

DESIGN

B
o

o
k

o
f

as
su

m
p

ti
o

n
s

Using assumptions :
• Final validation
• Re-checking if

evolution has occurred

Inform
ation

E
xplanations

R
ec

om
m

en
da

tio
ns

R
eq

ui
re

d
as

su
m

pt
io

ns

A
ssum

ptions validation

A
dded details

R
ec

om
m

en
da

tio
ns

D

etails validation

S
pe

ci
fic

 d
et

ai
ls

System Proof Team (ClearSy) 1/2 of effort 1/3 of effort
1/6 of effort

FLUSHING I System Level Formal Verification

20

 Natural language proof phase how-to

 Do not try to read all documents first
• Example: explained with relay names and schematics, the route cancel example could be

very complicated…

 Communication with designers is paramount

 Using documents only is not fast enough!

 Assumptions have to be chosen with designers

 “Lightweight” temporary documents for communication

 Drawings, short texts

 Meetings (teleconference to avoid losing time in travels)
• Describing precise understanding and asking confirmation is very efficient

• Even if things have to be confirmed in written form after, the amount of information
exchanged via discussion is far greater

 Need to obtain a formal proof as a motivation

FLUSHING I System Level Formal Verification

21

Natural language proof phase
benefits

 Building the reasoning with the designers provides an
immediate feedback
 Assumptions / reasoning review meetings (teleconference)

 All participants get familiar with the emerging reasoning
• Gathering CBTC experts, rail operating experts around common topics

 Questions about delicate assumptions / special cases known early
• With enough time to deal with them

 The value of a global reasoning based on defined assumptions
is shared as that phase
 Early in the project best benefits

 Avoiding any “tunnel effect”
• Tunnel effect: if the proof team’s work remains invisible too long

 In the Flushing project: ClearSy / NYCT / THALES meetings
 average teleconferences rate ~4h/2weeks

FLUSHING I System Level Formal Verification

22

 Final outputs

 At the end of the process: Book of assumptions
 Main contents: assumptions

• Precise definition
• Who may validate each assumption (OBCU experts, wheel/rail contact experts, etc.)
• How to derive tests and verifications for the assumption, method:

– Link real objects to notions, using explanations given in the documents
– See hold / not hold cases, use “example if wrong” method, check proposed method and

notes in the document
– Derive concrete verifications to do on the final actual device

 Usage:
• Re-validate the assumptions to guarantee the target properties

– After any project’s twists and turns
– In case of evolutions, changes

• Validate the assumptions for other similar systems
– Or a subset of assumptions corresponding to a sub-property

• Understand why the property is guaranteed (replay in manual reasoning)

 We also get B formal models and proof files
 Require B knowledge of course…

 Usage: after a system evolution, change…

FLUSHING I System Level Formal Verification

23

 Flushing: book of assumptions

 Exactly 5 Word files:

 In every file (except Flushing_Global):
 Proof targets §: properties that are guaranteed by proof

 Assumptions §: assumptions under which the proof holds (for each target property)

 Sub-proofs §: properties used as assumptions (for each target) that are target properties below

 Shared notions §: things we had to define to express properties and assumptions

 Proof path §: clues about how Atelier-B prover proved the target property

Flushing_Global.doc

Flushing_PZ.doc

Flushing_TrainTracking.doc Flushing_SafeBraking.doc Flushing_Tachos.doc

Document map, usage how-to,
some global reasoning

Anticollision property (using
interlocking + CBTC wayside
and on-board

Correct tracking by CBTC ZCs Safe braking (+ speed
enforcement) by CBTC on-board

Correct position & speed
detection by CBTC on-board

FLUSHING I System Level Formal Verification

24

 Formal modeling phase

 Convert the previous work into B-models such that the proof of
these models are equivalent to the previous reasoning

 Why necessary?

 we know it’s precise enough to be formalized only if we

formalize (even if natural language proof was meant to be formal)

 The book of assumptions is obtained from B models

 Experience: assumptions change shape from how they were

explained before B models (during natural language phase)

 Pure B modeling & proof: average 1/3 of global workload

FLUSHING I System Level Formal Verification

25

 Final phase: redaction, proofreading

 Final phase: from B models after proof, write the Book of
assumptions
 Made for direct usage

• In particular: no B variables and names inside!

 To be done at the end:
 one redaction costs less than many…

• Thanks to communications (natural language phase), no “tunnel effect”

 Internal proofreading: paramount
 We have precise things to verify

• Each notion shall be well defined
– Well defined = On any real scenario, interpretation should be undisputable

• Assumptions: checking how they can be validated (and by who)

 This proofreading done on the B models before the documents
• Focusing on B notion to reality links

 All proofreading / documents : 1/6 of the total workload

FLUSHING I System Level Formal Verification

26

 Global price / level of detail

 How to evaluate the global price of such a formal system level verification on a given system?
 If not done before, by definition the reasoning is unknown at start

 Depends on the complexity of this reasoning

 Depends on the level of detail
 Level of detail: a paramount question

 Wanted properties are proved using assumptions and sub-properties:

 Level of detail must be decided by a clear criteria

properties Safety targets

Formal
proof

Sub-properties assumptions

Mathematical
rules

Choosing what is taken as an
assumption or as a sub-property
(subject to a sub-proof) defines
the level of detail

For instance, consider the
route cancel example: if delay
properties must be proven from
the relay schematics,
additional work & cost. But
relay errors causing delay
bypass in some case could be
found…

FLUSHING I System Level Formal Verification

27

 Choosing the level of detail

 Choosing the level of detail determines what is proven
 Previous example: route cancel proof including / excluding relay schematics

• Determines if relay mechanisms will be proved
• Determines the shape of obtained assumptions

– Excluding relays: “route cancel with occupied approach zone causes T delay…”
– Including relays: “all cancel circuits are made according to XXX schematic…”

 Obviously: the deeper we go, the easier assumption validation is…
 Level of detail: a choice involving the customer

 Agree on a well defined criteria, agree on each particular case afterward
 Flushing: only system level, but with detailed CBTC algorithms

 Including: (examples)
• Pulse counting from tachometers (and specific points about direction change or slipping)
• Kalman filters for the speed measurement
• How gradients are used in the safe braking model
• Wayside to on-board communication: messages worst case dating, messages crossings, timeouts
• Train tracking: exchange of unequipped train suspicion between zone controllers
• Possible signal overruns (manual trains), associated locking including provisions for returns or mode changes
• Routes cancel and possible race conditions in the wired interface between CBTC and interlocking.

 Excluding:
• Actual code reviews (in particular: not including software track representation)
• External systems design (example interlocking relay schematics, however used to deduce global properties)

FLUSHING I System Level Formal Verification

28

 A glance at the Flushing proof

 Target properties and their value
 Top level “Protection Zones” proof

 Understanding the global reasoning

 Proof decomposition in sub-properties
 For each part of the proof:

 A glance at the assumptions & sub-properties used
• To get an approximate understanding

 Sorry, only “a glance”, not really replaying the proof
• This was a 4 days presentation to NYCT experts… With confidential details!

FLUSHING I System Level Formal Verification

29

 Global property presentation

 1: Train to train collision and train derailment over an incorrectly
positioned / unlocked switch are impossible

 2: CBTC train over-speeding is impossible

 With these properties, a whole set of accidents are impossible

 In fact, properties 1 & 2 are means to ensure no injuries on

persons
• Sub-properties of a more (too?) global proof…

• Using extra assumptions, about other ways to have injuries

– Fire? Electrocution? Smokes? Aggressions?

FLUSHING I System Level Formal Verification

30

 At all times, there exists a set of disjoint protection zones PZ,
such that each train remains inside its PZ under its own braking.

An idea of how we prove no collision

FLUSHING I System Level Formal Verification

31

 Why “under its own braking”:
 Examples of collisions with trains remaining inside PZ otherwise:

 So at all time t, if after t the PZ of a train remained unchanged this

train should stay inside this PZ and the corresponding proof should

rely only on guaranteed braking forces:

An idea of how we prove no collision

PZ

PZ1 PZ2

PZ1 PZ2
Speed curve

FLUSHING I System Level Formal Verification

32

 An idea of how we prove no collision

 PZs defined using “well defined” criteria. Examples:

 How to find type of train (as defined in proof)

 Defining PZ in each case to prove their existence. Then:

 Each train remains in PZ with its own forces (assumptions & sub-proofs)

 All evolutions keep PZ separated, with locked switches (induction)

Accepted
MAL true pos. Actual rear – rollback

OBCU

Accepted MAL, stopping not
triggered => orientated train

Actual rear – manual rollback
If no rear trip stop

No OBCU in control, operator
not ensuring line of sight Worst overrunning

beyond trip stop

Last PZ

Guaranteed
stop device
triggered?

Train operator
ensuring line-

of-sight?

On-board
computer in
MAL mode?

Line-of-sight PZ MAL PZ

Trip stop PZ

Orientated
trains

yes yes yes

FLUSHING I System Level Formal Verification

33

 An idea of how we prove no collision

 We define PZ precursors, from which train PZ inherit properties :
“zone controller PZ” and “interlocking PZ”:

 ZC PZ = state of ZCs
• CBTC Controlled trains PZ inherit properties when receiving telegrams from ZCs

 Interlocking PZ = state of interlocking
• Uncontrolled trains PZ inherit properties thanks to trip stops (and signals…)

• ZC PZ inherit properties from interlocking zones thanks to interlocking -> ZC inputs

 ZC & Interlocking PZ properties proved by induction also

(cancelled spacing signals)

MAL Trip stop Train PZ Train PZ ZC PZ
Interlocking PZ

Signal not cancelled

MAL Trip stop MAL Long overrunning

Note: we expressed assumptions for
interlocking about actual zones

“locked” (internal interlocking state)

FLUSHING I System Level Formal Verification

34

 An idea of how we prove no collision

 PZ evolutions: where the proof is…

 Zones extensions: up to signals or next obstruction

 Zones rear reduction: freeing inaccessible back space

 Zone front reduction (or middle = splitting): more delicate
• Example: for interlocking, only if

– ZC says next train keep the new limit
– Or if more than time or distance worst stopping limit

 Signal cancel at t0, x0 => stopped before t0+T or x0+D

 Output assumptions appear:
• Example: Interlocking should clear signals only so that corresponding “locked zones”

(interlocking PZ) do not intersect

MAL
Train PZ ZC PZ Interlocking PZ

Output to ZC set when interlocking opens

FLUSHING I System Level Formal Verification

35

 Properties & sub-properties

Real train motion within limits
of estimated train motion

Transponder detection: no fake
ID, no detection outside limits…

Actual train position within the
estimated envelope

No forged message, TC
transmission delay shorter than

estimated one

All slipping denoted by acceleration
change greater than fastest grade

change, …

No false free track circuit,...

No manual train shorter
than minimum,…

CBTC trains never reach MALs

Actual track grades
within database limits,…

Guaranteed worst
brake force

No collision: for all train, there
exists PZ such that…

Manual train assumptions

Interlocking assumptions

Properties (proved)

Assumptions

ONBOARD

ZC Interlocking & context

Track portions evaluated free by
ZC are indeed free

ZC protection zone rules:
How MAL are
constructed

FLUSHING I System Level Formal Verification

36

 Target properties:
 Always: contracted envelope inside real train inside extended envelope

 Real train speed is always within calculated train speed +/- calculated uncertainty
 Assumptions:

 Correct calibration / orientation by localization process

 Slip/slide and sensor failures limitations, track grade limitations (probabilistic)

 Correct train OBCU constants

 Correct OBCU transponder database

 Characteristics of transponder detection (and transponder layout with unique ids and limited crosstalk)

 Limitations of rail (worst turns…) / tachometers errors, counting errors

 OBCU computing assumptions, guaranteed cycle time

 Automation knowledge assumptions (Kalman filters)

 Maximum speed / acceleration (for instance for tachometer ticks counting…)
 Proof feasible with this: OK!

Position / speed correctness property

OBCU

Extended envelope

contracted envelope

According to OBCU
variables

Clearly a nice property:
• Avoids collisions (extended)
• Avoids wrong sweeping

(contracted)

FLUSHING I System Level Formal Verification

37

Safe braking (and CBTC speed
correctness)

 Target properties
 A train in MAL mode never violates its (accepted) MAL

 A train in MAL mode never overspeeds
 Assumptions

 The speed / position determination is correct (sub-proof)

 OBCU constants matching train EB characteristics and masses characteristics

 EB stronger than worst case grade

 Other forces (wind, …) negligible

 Probabilistic assumptions for very odd cases (example max spinning at start
train)

 OBCU computing according to wanted formulas (+ guaranteed cycle time)

 Physical laws assumptions (kinetic energy…)

 Correct grades in database

0 speed
safety gap

accel
coasting

braking

FLUSHING I System Level Formal Verification

38

 Train tracking

 Target properties
 Free zones according to ZCs are indeed free

 Assumptions
 Correct ZC constants

• Maximum train acceleration
• Minimum train length, max overhang (length from first axle to train’s front)
• Track ends are really ends
• Track circuits longer than shortest truck interval
• Track circuit map correct
• Dead zones shorter than limit
• Known TC acquisition time

 No trains appearing in the middle

 ZC computes according to algorithms, guaranteed cycle time
• Including ZC to ZC communication and ZC to train communication

 Trains move on linear track portions (no incorrect switch reached, cycling sub-proof,
proved)

 CBTC Trains give correct envelopes (sub-proof)

 Minimum assumptions for communication layer: no forged messages

 Assumption about OBCU communication (example: calculated envelopes are sent)

FLUSHING I System Level Formal Verification

39

 PZ proof (top property)

 Target property
 At all time, there exists a set of disjoints protection zones PZ, such that each train

remains inside its PZ with its own braking. No unlocked switches or obstacles inside
PZs

 Assumptions
 Interlocking assumptions (using locked zones notions)

• No switch movement in locked zones
• Unlocking no longer accessible parts
• Clearing signals only into locked zones
• Interlocking protection zones extension / reduction compatible with train capabilities

 Train procedures assumptions
• Example: when restarting in manual a failed CBTC train, TO must proceed in line-of-sight to next signal

 ZC computes according to algorithms, guaranteed cycle time
• Including ZC protection zones extension / reduction rules according to train / interlocking
• Including ZC to ZC communication and ZC to train communication

 CBTC Trains give correct envelopes (sub-proof)

 Correct train tracking (sub-proof)

 Correct safe braking (sub-proof)

 Minimum communication assumption: no forged messages

 Assumption about OBCU communication

FLUSHING I System Level Formal Verification

40

 End of the “glance at global proof”

 Just a glance, of course!

FLUSHING I System Level Formal Verification

41

 Safety and proven properties

 Flushing formal verification:

 Proved properties:
• No collision and no derailment (“PZ” proof)

• No over-speeding

 Level of detail: system
• Including algorithms, excluding low level design (actual software code)

 Position of this work inside the global safety assessment

 Among process audits, failure determination, etc.

 The right balance of formal efforts among other efforts is always
to be carefully examined

FLUSHING I System Level Formal Verification

42

 Proof and failures determination

 Our assumptions are supposed to hold despite any possible failure or
failure accumulation

 Possible = probability not below what is required for this safety level

 Example:

 We have assumptions about how a localized OBCU updates
envelopes

• Assumption : if OBCU localized, then envelope update should conform to…
• So : this assumption does not requires anything for a non-localized OBCU

 If the OBCU has a power failure no problem, the assumption still
holds due to the definition of “localized state” (no longer localized)

• If OBCU has a memory corruption (always detected): same reasoning.

 Chosen assumptions are those that are required despite any failure
• Crash possible when they no longer hold…

 So possible failure determination / accumulation probability
determination is still required!

FLUSHING I System Level Formal Verification

43

 Failures

 No property will withstand any failure…
 Example: safety relay do not operate without command

 Would this withstand “sabotage level” failures?

 Probability considerations to remove extremely unlikely cases:

always needed
 Assumptions in the proofs hold, unless those extremely unlikely cases

 Some assumptions are explicitly probabilistic (example: no undetectable slip)

 If occurrences where target property does not hold must be <10-9, then
cases where 1 assumption does not hold should be (at least) less than
10-9…

 With some possibilities to avoid accumulating worst cases too far:
• Example: positioning proof (real train inside computed envelope) holds under assumptions

“input inside worst case bounds”

– Then put numeric values in this proof only for non-impossible worst cases sets
 Reaching worst case bounds on every input: very improbable!

FLUSHING I System Level Formal Verification

44

 Risk analysis

 Standards require that safety assessment starts with a risk
analysis

 Considering accidents

 Deciding what is acceptable and what is not

 Train head-on collision to be avoided with SIL4 compatible level
• Occurrence less than 10-9 per hour, mean time between occurrences 114 000 years

 How was this decided?
• Considering the potential number of killed…

• But there is an acceptable / not acceptable decision (human judgment)

 This kind of decision is not a matter of proof

 Risk analysis are still required, they are the basis of good target

properties choice

 As standards say, it is very bad to poorly decide risks…

FLUSHING I System Level Formal Verification

45

 Safety Integrity Levels & methods

 Standards require appropriate methods to mitigate design errors

 Called systematic failures

 Probability computation considered irrelevant here because occurrences

are systematic under some conditions

 Standards define appropriate methods to prevent systematic failure,

according to the target safety integrity level

 Assumptions from a system level formal proof have an “inherited” SIL
level

 So appropriate methods are applicable for the underlying design

 No design errors in the system level design (covered by the proof):
considered SIL4

 But standards usually consider formal methods at software level (“Highly

Recommended” for SIL4 in 50128…)

FLUSHING I System Level Formal Verification

46

 Formal at system or detailed level?

 Often, formal methods are used only at software level
 Proof covering the “software specification software code” step

• Preventing errors in the code that were not in software specifications

 Here: proof from top level safety properties to system design
 Comparison?

 System level proof generally dedicated to safety properties only
• Software proof generally include functional aspects (because included in software specifications)
• At system level: functional aspects = performance (example: reducing train spacing “as much as safely

feasible”)

 System level proofs cover “all aspects”
• From underlying software algorithms to train procedures

 In software proof, direct link from lower level models to code (code generation)
• Direct action against low level coding bugs
• System level proof provides output assumptions about properties to be ensured by the software: indirect

action

 A matter of choice and balance
 Putting the lightning rod where the lightning may strike…

FLUSHING I System Level Formal Verification

47

About project processes /
organization

 Project success and safety are linked, many possible ways toward
successful projects:

 More process monitoring?

 More proofreading and quality?

 More training?

 More science?

 More people and means?

 More testing?

 More team / customers communications?

 Nothing should be missing!
 Formal proofs are to be inserted considering the balance with all this

 And considering the safety effort required

FLUSHING I System Level Formal Verification

48

 Project share for safety

 Safety: a “performance” that does not show up in tests
 Train spacing reduction thanks to a new CBTC is directly visible

 Increased safety thanks to a formal proof (for instance) is not visible the same
way…

• And “no accident during X years” is not enough for systems where mean time between unwanted events
should be more than 114 000 years…

 Return over investment more difficult to evaluate
 New functional performances directly visible, not safety improvements

• Unless very unsafe before!

 Good choice of project share for safety and optimized use of this share
must be a constant concern
 Too little spending on safety:

• The system may be dangerous (if not blocked by safety assessments…)

 Too much spending on safety:
• System too expensive, risk of project failure

 The use of formal proofs have to be considered with this view
 After an accident, things that should have been done always seem so obvious!

FLUSHING I System Level Formal Verification

49

 In the design or along the design?

 Formal proof at system level: to be coupled with designer’s task
or ISA (Independent Safety Assessors) tasks?

 With designers:
 To favor communications with designers, design understanding

and realistic assumptions

 Shared and early knowledge of issues and special cases

 With ISA:
 Independence

 Our opinion: whatever the organization,
1. The proof team must be a specific team

• Impossible to design a safe system and formalize the reasoning at the same time

2. The proof team should not start too late (not when the design is
finished)

FLUSHING I System Level Formal Verification

50

 Example: “envelopes update”

 It means that we should have for instance cemax = cemax_r + Scmin
 Will someone find cemax = cemax_r + Scmin in the software code?

 NO, anyway the software code probably denotes track positions using branched
coordinate system

• Positions denoted by <segment name, abscissas>, not by abscissa only… Lower level design.

 cemax, cemax_r, Scmin = notions / notations from the proof
 Efforts are needed to match them to the real software

 Define only unavoidable notions

 Use them near their definition (do not ask people to remember them!)

About proof / design communication:
those damned “notions”…

OBCU

contracted envelope
(at last time)

OBCU

contracted envelope
(now)

FLUSHING I System Level Formal Verification

51

Necessary “notions”… At least
should be well defined

 So all assumptions are expressed using words…
 Let’s imagine a fancy assumption: “the house is red”
 But what is “the house”?

• Walls? Roof? Inside? Outside?

 And what is “red”?
• Dark orange? Shiny? Striped?

 Defining this means linking words to reality
 Designing a clear criteria to tell what is part of “the house” and

what is not

 And a criteria to tell what is “red” or not

 Only then can the assumption be correctly TRUE or FALSE
 Method: make precise the notion of “house” and “red” here
 And use the notions in assumptions

FLUSHING I System Level Formal Verification

52

Communication & Optimization of the
proof construction process

 Again, natural language phase is paramount to “find the way” from realistic
assumptions to wanted properties

 Projects documents usually describe “how”
 With functions names, messages names, etc.

 Bottom-up process:
• Formalize every low level details
• Deduce higher properties from this
• Up to wanted properties

 Our experience: this process is a bad idea
• Because formalizing unnecessary details

 Our experience: the proof team should have the will to understand how
wanted properties are ensured
 As fast as possible, as directly as possible

 Using contacts with designers in this spirit

 Reading documents in this spirit
• Although verification through full documents will be done after in the process

– Checking that a function exist requires reading documents up to this function. Checking that it
does not exist requires reading all…

FLUSHING I System Level Formal Verification

53

 Summary of outputs

For evolutions / other systems

Project Team (THALES / NYCT)

Finds the correct reasoning and
establishes the target safety
properties, including assumption
choice (about design / context)

B formulation
Proof with
Atelier B

Translating B
formulas into
natural language

B models + Proof files

DESIGN

B
o

o
k

o
f

as
su

m
p

ti
o

n
s

Using assumptions :
• Final validation
• Re-checking if

evolution has occurred

Inform
ation

E
xplanations

R
ec

om
m

en
da

tio
ns

R
eq

ui
re

d
as

su
m

pt
io

ns

A
ssum

ptions validation

A
dded details

R
ec

om
m

en
da

tio
ns

D

etails validation

S
pe

ci
fic

 d
et

ai
ls

System Proof Team (ClearSy)

On-going exchanges &
recommendations from the start

Reusable
“know-why”

Atelier
B

Formal
reusable
outputs

Atelier
B

Atelier
B

FLUSHING I System Level Formal Verification

54

System level formal proof: conditions
for success

 According to us…
 Proof team really willing to:

• Understand the system (“plunge” in the domain)
– But optimize their reasoning (use minimum necessary details)

• Exchange with the designers (with the will to provide a service)
– Using extra names and notion knowing that this is a pollution

• Formalize the optimized reasoning (and only the optimized reasoning)

 Organization: access to people really knowing the design
• With enough time
• Proof team // Designers: neither 1 to 100 nor 100 to 1!

 Organization allowing easy / lightweight communication
• Test: will teams exchange hand-written drawings (both directions)?

 The proof team should master the formal method enough to use it as
a tool (knowing what the method can do and cannot do)

FLUSHING I System Level Formal Verification

55

 Proof team skills

 A team leader is needed to constantly remind the previous
“conditions for success” (previous slide)

 Of course, skills with the formal method / tool (B / Atelier B) are
needed

 As a tool, but this is not the main point

 Technical “openness” is paramount

 Team members need to be willing to cross technical domains’

limits

FLUSHING I System Level Formal Verification

56

Benefits of a formal system level
proof

 Usually: system safe because

 Safety assessors gave a positive conclusion

 Supplier has commissioned similar safety systems

 A complete safety case has been approved

 With a “replay-able” system level proof: system safe because in
addition
 Impossibility of accidents has been demonstrated

• Each proof step is verifiable using only pure logic steps
– Everyone who wants it can check these steps

• Properties are obtained from well defined assumptions
– Everyone who wants it can see those assumptions (and understand what they mean in

the field)
• The proof steps correctness is guaranteed by a tool (Atelier B)

 Anybody could read the proof,
• maybe discuss some assumption validity in the actual system;
• But NEVER doubt that properties are logically deduced from these assumptions

FLUSHING I System Level Formal Verification

57

 Deciding for a system level proof

 Criteria (again according to us…):

 Need for a global safety guarantee
• With a focus balanced on every part of the delimited system

 Need to have all the necessary conditions at hand

 Need to have the “reasons why its safe” at hand
• At hand and re-playable

 When there is no obvious pitfall to correct first
• Either technical or organizational

 The strength of a chain is that of its weakest ring…
• We can use formal methods to strengthen a ring or to make sure that there are no weak

ring

FLUSHING I System Level Formal Verification

58

 Thanks

 Thank you for your attention…
 And special thanks to NYCT / Thales

 For any extra information, contact:
• Denis.sabatier@clearsy.com

• Lilian.burdy@clearsy.com

mailto:Denis.sabatier@clearsy.com
mailto:Lilian.burdy@clearsy.com

FLUSHING I System Level Formal Verification

59

 Explicit, reviewed assumptions

 Example: a “braked only” axle cannot spin
• Braked only = no traction motor, spin = slipping faster than train speed

 Useful for a tachometer axle…

 But is it really true?
• Should be sub-provable using laws (Change of rotation speed x Inertia moment =

Torques)

• Not true in all cases… Axle rotating fast, on a slippery rail, if train decelerates strongly

– But cases of spinning are considered unrealistic

 Example of an apparently obvious assumption that needs
Domain experts contact to judge…

• A proof needs ALL assumptions explicitly

• Explicitly formulated, the issue can be examined

F1

F2

FLUSHING I System Level Formal Verification

60

 Example: linking real wheel rotation to OBCU outputs

 Needed for “train inside their envelope” property, example:

 Assumptions:

• At t, Rc may come from N dating back t-2Tc

• Minimum and maximum R change during 2Tc: using assumptions about greatest train
acceleration and such

 Combining equations: we can prove t, Rc(t) – • ’ • • • • • • • • • •
• OK if uncertainty calculated by OBCU is greater than e’’

• Proof steps: only simple rules (ex: a<b and b<c implies a<c; a<b and x>0 implies ax<bx…)

Using “physical” variables, i.e.
infinite accuracy

An idea of how we prove more
algebraic sub-properties

MAL OBCU

Calculated envelope: error!

R(t): actual wheel
rotation

Wheel sensor: N

t, N(t) –

	New York Metro Flushing line
	What is “system level formal verification”?
	System level formal verification: process for the Flushing project
	Line 7 CBTC: role & architecture
	New York specificity: trip stops
	Line 7 CBTC: better train movements in safety
	Line 7 CBTC: train positions
	Line 7 CBTC: safe braking
	Chosen target safety properties
	Obtained final outputs
	Proof should be verifiable, even without formal methods
	Reasoning with defined rules and assumptions: Dijkstra example
	Reasoning with defined rules and assumptions: route cancel example
	Reasoning with defined rules and assumptions: route cancel example
	Reasoning with defined rules and assumptions: route cancel example
	Different types of assumptions
	Methodology: choosing assumptions
	Finding why it works: methodology
	Global methodology
	Natural language proof phase how-to
	Natural language proof phase benefits
	Final outputs
	Flushing: book of assumptions
	Formal modeling phase
	Final phase: redaction, proofreading
	Global price / level of detail
	Choosing the level of detail
	A glance at the Flushing proof
	Global property presentation
	An idea of how we prove no collision
	An idea of how we prove no collision
	An idea of how we prove no collision
	An idea of how we prove no collision
	An idea of how we prove no collision
	Properties & sub-properties
	Position / speed correctness property
	Safe braking (and CBTC speed correctness)
	Train tracking
	PZ proof (top property)
	End of the “glance at global proof”
	Safety and proven properties
	Proof and failures determination
	Failures
	Risk analysis
	Safety Integrity Levels & methods
	Formal at system or detailed level?
	About project processes / organization
	Project share for safety
	In the design or along the design?
	About proof / design communication: those damned “notions”…
	Necessary “notions”… At least should be well defined
	Communication & Optimization of the proof construction process
	Summary of outputs
	System level formal proof: conditions for success
	Proof team skills
	Benefits of a formal system level proof
	Deciding for a system level proof
	Thanks
	Explicit, reviewed assumptions
	An idea of how we prove more algebraic sub-properties

