
Developing Safety Critical Applications

HANDBOOK

CLEARSY Systems Engineering

Copyright c© 2019 CLEARSY

PUBLISHED BY CLEARSY SYSTEMS ENGINEERING

ISBN: 978-2-9568880-0-0

HTTPS://WWW.CLEARSY.COM/EN/OUR-TOOLS/CLEARSY-SAFETY-PLATFORM/

Licensed under the Creative Commons Attribution-Non Commercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Edition February 2020

http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 7

1.1 Tool support 8

1.2 Who this book is for 8

1.3 To the instructor 8

1.4 Book organisation 8

1.5 Acknowledgements 9

2 Introduction . 11

I Description

3 Architecture and Safety Principles . 15

3.1 Introduction to safety 15

3.2 Architecture 19

3.3 Safety Principles 21

4 Programming . 25

4.1 Installation 25

4.2 A first run 26

4.3 The programming model 29

4.4 Development cycle: the steps 29
4.4.1 CSSP project creation . 30
4.4.2 Editing CSSP components . 30

4.4.3 Proving CSSP project . 31
4.4.4 Interactively proving CSSP project . 31
4.4.5 Generating code for CSSP project . 31
4.4.6 Archiving and importing for CSSP project . 32

4.5 Programming the board 32
4.5.1 Declaring variables . 34
4.5.2 Declaring constants . 34
4.5.3 Describing a behaviour . 35

II Projects

5 Combinatorial . 41

5.1 Modelling 41
5.2 Executing 43
5.3 Testing 44

6 Clock . 45

6.1 Modelling 45
6.2 Executing 47
6.3 Testing 48

III Appendix

7 Hardware interface . 51

7.1 Power supply 51
7.2 Reset button 52
7.3 Microcontrollers 1 & 2 52
7.4 Serial bus 52
7.5 Inputs 52
7.6 Board ID 52
7.7 Serial channel selector 53
7.8 Programming & monitoring link 53
7.9 Outputs 53
7.10 Electric constraints 54

8 LEDS on SK0 . 55

8.1 Powered 56
8.2 Healthy 56
8.3 High level input signal 56
8.4 Reboot, bootload or panic modes 56
8.5 Heartbeat 56
8.6 High level output signal 56

9 CSSP Serial Monitor . 57

10 Connecting several boards together . 59

11 Software interface . 61

11.1 The interface with the safety library 61
11.1.1 g_types . 61
11.1.2 g_operators . 62
11.1.3 io_constants . 63
11.1.4 lchip_configuration . 63
11.1.5 lchip_interface . 63
11.1.6 user_configuration . 64

11.2 The model of the function 64
11.2.1 user_component . 64
11.2.2 user_ctx . 64
11.2.3 inputs . 65
11.2.4 logic . 66
11.2.5 outputs . 67

12 Troubleshooting . 69

12.1 Upload fails immediately 69

1. Preface

This book provides an introduction to the CLEARSY Safety Platform (CSSP in short). It is aimed
at easing the development and the deployment of safety critical applications, up to SIL4. It is
made of an integrated software development environment (IDE) and a hardware platform that
natively integrates safety principles. It relies on the smart integration of formal methods (including
mathematical proof), redundant code generation and compilation, and a hardware platform that
ensures a safe execution of the software.

The B formal method is at the core of the software development process. Mathematical proof
ensures that the software complies with its specification (functional model) and guarantees the
absence of programming errors while avoiding unit testing and integration testing. Moreover only
one functional model is used to produce automatically the redundant software, avoiding the need to
have two independent teams for its development 1.

The safety principles are built-in, both at software level and at hardware level (2oo2 hardware,
4oo4 software2). They are out of reach of the developer who cannot alter them. The detection of
any divergent behaviour among the two processors (PIC32 micro-controllers) and the four instances
of the software is handled by the platform. The safety verification includes cross checks between
software instances and between micro-controllers, memory integrity, ability to control outputs, etc.

R The CSSP Starter kits SK0 and SK1 are only for education and industrial prototyping
respectively. If the software generated by the Atelier CSSP is the one that will be running
on the final safety critical system, the electronics of SK0 and SK1 do not comply with SIL3
/ SIL4 requirements. One of the reasons is that such electronics would largely increase the
board prices and it would be clearly against the dissemination of the technology.
However the CSSP Core Module (available by the end of 2019), a daughter board to be
plugged on a motherboard with digital IOs, will be SIL4-ready and usable in a real safety
critical application.

1as required by railways standards for the highest SILs, for examples
2put for "2 out of 2" and "4 out of 4", are consensus voting principles used for safety architectures, where all

processors have to obtain the results to initiate a potentially dangerous action.

8 Chapter 1. Preface

1.1 Tool support

Working with the CSSP 3 requires, as a minimum, access to the Atelier CSSP, an IDE derived from
Atelier B 4 and extended with specific features like diverse code generation and CSSP starter kit
configuration. This IDE allows to create a CSSP project, specify and implement the behaviour of
the CSSP, typecheck and compile the project. Finally the IDE allows to upload the program on
the CSSP and to monitor its execution. For the execution of the program, either CSSP starter kit 0
(SK0) or 1 (SK1) board may be used. The only difference between the two boards is the number of
digital IOs (5 for SK0, 28 for SK1).

1.2 Who this book is for

This book is intended primarily as a textbook for post-graduate courses . It is also appropriate
for courses on formal methods in general and on (safety related) embedded systems. The book
assumes no prior knowledge of formal methods or of reasoning about programs. However it
assumes a previous exposure to logic and a basic ability to manipulate simple logic and set theoretic
expressions. No prior knowledge of the modelling language, namely the B language, is required as
language elements will be introduced when needed. Moreover, as project skeletons are automatically
generated, being able to develop a full B project is not required: programming the CSSP requires
one component (the user_logic operation) to be modified and possibly new components to be added.

1.3 To the instructor

This book has grown out of a course based around the B method and the CLEARSY Safety Platform,
developed over a period of three years in Brazil, Canada, France, Italy, Portugal and UK. The
material is organised to introduce the central ideas as quickly as possible. This allows the students
to become familiar with the tool support at the earliest possible stage, and to use it to develop their
own programs. It also means that the students learn the B-method from a software engineering
point of view, as they are taught from the viewpoint of using the B-method,instead of the theory
beneath. Such theory and language elements are introduced as and when they are needed. The
Atelier CSSP generates a pre-filled B project, so the students do not need to develop a full B project
but only to complete the specification and implementation of some CONSTANTS, VARIABLES,
and OPERATIONS. The first part of the book introduces the overall picture, the development
process, and the language elements. They have to be read in this order. The second part of the
book contains a number of examples. The first two are related to synchronous and combinatorial
programming, they have to be completed before moving to the next ones.

For any further information, requests or questions, please contact:

contact-csp@clearsy.com

1.4 Book organisation

This book has an associated website, accessible from

https://www.clearsy.com/en/our-tools/clearsy-safety-platform/

This website contains the source code of all the examples and exercises presented in this book.

3https://www.clearsy.com/en/our-tools/clearsy-safety-platform/
4https://www.atelierb.eu/en/

1.5 Acknowledgements 9

1.5 Acknowledgements
The CLEARSY Safety Platform is being developed to compete on the international scene of safety
critical systems, with the key idea to lower development and certification costs. Its development is
a collective effort being produced in-house during development but also on site all over the world
during deployment and exploitation, to obtain finally a safety, SIL4-ready product.

We would like to thank people involved in the dissemination of the CLEARSY Safety Platform
allowing us to deliver talks, courses, and hands-on sessions to their colleagues either teachers,
researchers, or students, and in particular: Alexander Romanovsky (Univ. Newcastle, UK), Chris-
tiano Braga (UFF, Brazil), Emmanuel Chailloux (LIP6, France), Marc Frappier (Univ. Sherbrooke,
Canada), Idir Ait Sadoune (CentraleSupelec, France), José Oliveira (Univ. Minho, Portugal),
Leopoldo Teixeira (Univ. Pernambuco, Brazil), Marcel Oliveira (UFRN, Brazil), Tiago Massoni
(Univ. Campina Grande, Brazil), Valerio Medeiros (IFRN, Brazil), and Yamine Ait-Ameur (En-
seeiht, France).

Figure 1.1: A busy hands-on session at the University of Minho in Braga, Portugal

Particular thanks are due to the team in charge of its development over the past years: Adrien
Somoza, Bruno Lavaud, David Deharbe, Denis Sabatier, Eliott Trotebas, Emine Aktepe, Etienne
Prun, Florent Patin, Guillaume Pressouyre, Hector Ruiz Barradas, José Tarsitano, Lilian Burdy,
Loïc Claudet, Ludovic Delfau, Manfred Winkler, Mathieu Comptier, Maxime Renaud, Patrick
Sauvage, Sébastien Agostini, Sylvain Breux, Thierry Lecomte, Thomas Gonthier, Vivien Galuchot.

Aix en Provence, France, February 2020

2. Introduction

Developing safety critical applications often requires rare human resources to complete successfully,
while off-the-shelf block solutions appear difficult to adapt especially during short-term projects.
The CLEARSY Safety Platform fulfils a need for a technical solution to overcome the difficulties
of developing SIL3/SIL4 system with its technology based on a double-processor and a formal
method with proof to ensure safety at the highest level[Lec16]. The formal method, namely the B
method[Abr96], has been heavily used in the railway industry for decades[Lec09][Lec08][Ben11].
Using its IDE, Atelier B, to program the CLEARSY Safety Platform ensures a higher level of
confidence in the generated software.

Figure 2.1: Metros and trains equipped with B SIL4 software

The CLEARSY Safety Platform is both a software and a hardware platform aimed at designing
and executing safety critical applications. One formal modelling language is used to program

12 Chapter 2. Introduction

the board. Programs are developed using the dedicated IDE or could be the by-product of some
translation from a Domain Specific Language to B. The IDE takes care of the verification of the
software (type check, proof, compilation) and then ensures its upload to the hardware platform.
The program is guaranteed to execute until a misbehaviour is detected, leading to a safe restricted
mode where board outputs are deactivated.

The CLEARSY Safety Platform eases the development of safety critical applications as:
• it covers the whole development cycle,
• the safety principles are built-in and are out of reach of the developer, who cannot alter them,
• it is based on a formal language (B) and related proof tools,
• the mathematical proof replaces unit and integration testing.

The CLEARSY Safety Platform eases the certification of safety critical applications as:
• the safety cannot be altered by the developer,
• it will come with a certification kit.

The building blocks of the CLEARSY Safety Platform, already certified in international projects
during the years 2017 and 2018 by several certification bodies, have been used to develop a generic
version of this technology that could fit a broader range of applications.

Figure 2.2: Starter kits SK0 (left) and SK1 (right)

The first starter kit, SK0, allows to experiment with the whole development chain, including the
IDE, using the B-Method and an electronic board hosting the safe execution platform relying on
two PIC32 microcontrollers, providing 3 digital inputs and 2 digital outputs.

The second starter kit, SK1, is functionally identical to SK0. It provides 20 digital inputs
and 8 digital outputs. The core automaton, with its two PIC32 microcontrollers, is hosted on a
motherboard while the inputs/outputs are located on a daughterboard.

I

3 Architecture and Safety Principles 15
3.1 Introduction to safety
3.2 Architecture
3.3 Safety Principles

4 Programming . 25
4.1 Installation
4.2 A first run
4.3 The programming model
4.4 Development cycle: the steps
4.5 Programming the board

Description

3. Architecture and Safety Principles

3.1 Introduction to safety
Safety critical systems are systems where life is at risk. One mistake could lead to injury or death
(of passengers aboard trains, planes, or cars for example).

One question for a developer is:

"would you dare to execute your program if someone would die in case of a crash / core dump /
fatal error / etc. especially someone you know like a friend or a member of your family?"

Figure 3.1: Double collision which occurred on 8th October 1952 at Harrow and Wealdstone
Station

When you develop a safety system, you are not left alone. Depending on your application
domain, you have standards that provide you guidance based on the safety level you are looking for.
Note that these standards do not provide a definitive recipe to produce safety systems, but more a

16 Chapter 3. Architecture and Safety Principles

collection of state-of-the-art recommendations related to the software, hardware, and development
process 1.

Figure 3.2: Table from IEC 61508 standard showing design recommendations for SIL1 to SIL4
software (R: recommended, HR: highly recommended, NR: not recommended. Note that nothing
here, including formal methods, is mandatory

Before connecting your system to the real world and switching it on, you need to complete
a safety case, that is a demonstration the feared event(s)2 will not happen more frequently than
expected. For SIL3, it is one failure every 100 years, and for SIL4, one failure every 10,000 years.

For the safety case, you need to consider the whole picture: the hardware (computers, sensors,
actuators, etc.), the software, and the environment at large. The main question is:

"what could happen in case that something fails?"

We are far from the concept: "it compiles, hence it works". The safety case always depends on a
number of hypotheses that restrict the scope. The idea is not to protect against everything but only
to consider a set of "reasonable" situations. As an example, for train collision, we do not consider a
plane that could crash on the tracks.

The "failures" considered are diverse and represent a large spectrum of situations:
• specification error: we specified the wrong system or software.
• development error: the specification is correct but the implementation does not comply with

its specification. It could be a functional mistake: the algorithm is doing something different
from what is expected. It could be non-functional: the operation is performed slower than
expected.

1and also maintenance
2in the railway sector, it is mainly train collision

3.1 Introduction to safety 17

• programming error: numbers are divided by 0, arithmetic computation produces overflow, or
tables are accessed outside of their range.

• compilation error: binary code produced does not comply with source code 3

• wrong execution: the memory is corrupted (wrong data, wrong instruction, corrupted program
counter), the hardware is failing (wrong instruction execution, incorrect storage/access)

• failing hardware: sensors are providing incorrect values, actuators cannot be commanded
properly.

For a SIL4 system, the target reliability is between 10−7/h to 10−9/h. Given that a processor
reliability is estimated between 10−4/h to 10−6/h, a single processor is not sufficient for a SIL3 or
SIL4 system. That is why two processors (or more) are used in parallel (traditionally with a voter -
the two processors have to come to the same decision to initiate a potentially risky action 4). In
addition, the two processors are equipped with protecting mechanisms that would allow the system
to continue its mission in case of perturbation / failure.

Figure 3.3: Path from requirements to binary code with B

The contribution of B to the safety case is explained in figure 3.3. In this figure, we see the
different stages from requirements to binary code (from top to bottom). The B method covers
the software specification and implementation stages (the grey box) where the specification and
implementation models are proved (we will see later on what it means). However the inputs and
outputs of this grey box are error prone:

• the specification model could be different from the natural language requirements. Usually
human based cross verification is required - every requirement should be in the model, every
modelling element should be issued from the natural language requirements. Validation
testing also helps to find mistakes at this stage.

• the code generated could be different from the implementation model: the code generator may
alter the semantics of the implementation model due to incorrect code generator specification

3Who is reading the binary code these days?
4for example, opening platform screen doors on a metro platform with the risk that waiting passengers could fall on

the tracks if no train is present.

18 Chapter 3. Architecture and Safety Principles

or bugs.
• the binary code could be different form the source code: the compiler may alter the semantics

of the source code, due to improper optimisation options or bugs.
• the processor executing the binary code could exhibit a misbehaviour due to either internal

reasons (design or production flaw) and/or external reasons (high energy particles, electro-
magnetic waves, etc.).

Usually the last three bullets are taken into account with diversity, given that the program is
executed on two (or more) processors: two different code generators are used to produce two
different source codes from the same formal model. It is very unlikely that two tools developed
with different technologies (programming language, libraries, compiler) and by independent teams
are going to exhibit the same unsafe behaviour under the same conditions. One code generator
could for example use a big endian memory model while the other uses a little endian one. Another
option is to add void instructions 5 in one source code only that do not change the final behaviour
but produce a different binary code. That way a processor perturbation would not affect the two
programs the same way because different parts of each program are being executed.

We can clearly see that in the case of safety systems, the B method is only one part of the
story and other means have to be set up to reach safety related objectives. These means require
rare human resources to complete successfully because of the deep level of understanding of both
hardware and software parts to consider.

Figure 3.4: Path from requirements to binary code with B with the CLEARSY Safety Platform

With the CLEARSY Safety Platform, the very technical aspects related to safety are taken into
account by the platform (see chapter 3.3), leaving the developer to focus only on the development
of the function to perform. In the figure 3.4, the combination of B and CSSP covers all the steps

5One code could be xx := yy + zz while the other is xx := yy + zz + 1 - 1

3.2 Architecture 19

from software specification to binary code. The developer is only required to be able to specify and
program in B (with DSL if a translator from DSL to B is available), thus less expert profiles could
be used for the development. The only remaining activity to perform (apart from validation testing,
always mandatory) is the traceability/coverage between natural language requirement and formal
modelling. Hence the CLEARSY Safety Platform, with its technology based on a double processor
and a formal method with proof to ensure safety at the highest level, fulfils the need for a technical
solution to overcome the difficulties of developing SIL3/SIL4 systems.

3.2 Architecture

The CLEARSY Safety Platform is made of two parts: an IDE to develop the software and an
electronic board to execute this software. The full process is described in figure 3.5.

Figure 3.5: Full path from function description to safe execution with the CLEARSY Safety
Platform. Round boxes are tools, rectangular boxes are files.

It starts with the function specification (natural language) to develop. The developer has to
provide a B model of it (specification and implementation) using the schema:

• the function to program is a loop, where the following steps are performed repeatedly in
sequence:

– the inputs are read 6

– some computation is performed
– the outputs are set

• The steps related to inputs and outputs are fixed and cannot be modified.
• Only the computation may be modified to obtain the desired behaviour.

The implementation is usually handwritten but could also be generated automatically with the
B Automatic Refinement Tool 7. The B models are proved (mostly automatically as the level of

6Inputs are similar for µC1 and µC2, unless the inputs are captured at different times in which case the different
values would cause the platform to enter panic mode.

7However automatic refinement requires a higher level of experience of B and is not covered in this book.

20 Chapter 3. Architecture and Safety Principles

abstraction of typical command & control applications is low) to be coherent and to contain no
programming error. From the implementable model, two binaries are generated:

• binary1, obtained via a dedicated compiler (developed by CLEARSY) transforming a B
model into HEX 8 file,

• binary2, produced with the Atelier B C code generator then compiled with the GCC compiler
into another HEX file.

Each binary represents the same function but is supposed to be made of different sequences of
instructions because of the diversity of the toolchains. Then the two binaries binary1 and binary2
are linked with:

• a sequencer, in charge of reading inputs, executing binary1 then binary2, and setting the
outputs

• a safety library, in charge of performing safety verification (more details in chapter 3.3). In
case of failing verification, the board enters panic mode, meaning the outputs are deactivated
9, the board status LED start flashing, and the board enters an infinite loop doing nothing. A
hard reset (power off or reset button) is the only possibility to interrupt this panic mode.

The final program is thus made of binary1, binary2, the sequencer and the safety library. The
memory mappings of binary1 and binary2 are separate.

This program is then uploaded on the two microcontrollers µC1 and µC2. The bootloader, on
the electronic board, checks the integrity of the program (CRC, separate memory spaces). Then both
microcontrollers start to execute the program. During its execution, the following are performed:

• internal verification:
– every cycle, binary1 and binary2 memory spaces (variables) are compared
– regularly, binary1 and binary2 memory spaces (program) are compared 10

– regularly, the identity between memory output states and physical output states is
checked to detect if the board is unable to command the outputs.

• external verification:
– regularly (every 50ms at the latest), memory spaces (variables) are compared between

µC1 and µC2.
If any of these verifications fail, the board enters the panic mode.

The whole process is fully supported by adequate tools. In the figure 3.6, the tools and
text/binary files generated are made explicit for both the application (path used every time an
application is developed) and the safety belt (developed once for all by the IDE development team
11. The tools are issued from Atelier B, except:

• the B to HEX compiler, initially developed to control platform screen doors for metro lines
in Brazil. This tool proceeds in two steps: a translation from B to ASM MIPS, then from
ASM MIPS to HEX 12.

• the C to HEX GCC compiler.
• the linker combining the 2 hex files with the safety sequencer and libraries.
• the bootloader

8"Intel HEX is a file format that conveys binary information in ASCII text form. It is commonly used for programming
microcontrollers, EPROMs, and other types of programmable logic devices." (Wikipedia)

9No power is provided to the Normally Open (NO) outputs, so the output electric circuits are open.
10This verification is performed "in the background" over thousands/millions of cycles, to keep a reasonable cycle

time.
11Note that from the abstract formal model, one part of the software is developed in B with concrete formal model,

while the other part is developed manually. It happens when using B provides no added-value (for example low-level IO).
A component modelled in B and implemented manually is called a basic machine.

12In order to ease debugging as ASM MIPS to HEX is a straightforward line-to-line translation.

3.3 Safety Principles 21

We can clearly see that the CLEARSY Safety Platform is a generic PLC 13 able to perform
command and control over inputs and outputs. The overall architecture is similar among all
instances of the CLEARSY Safety Platform. The differences are due to the physical interface:

• 5 IOs for SK0, 28 for SK1.
• digital (Boolean) IOs for SK0 and SK1, analog IOs in the future.
• network connection (messaging) through a maintenance processor, in the future.

R From a safety point of view, the current architecture is valid for any kind of mono-core
processor. The decision of using PIC32 microcontrollers (able to deliver around 50 DMIPS)
was made based on our knowledge and experience of this processor. Implementing the
CLEARSY Safety Platform on other hardware 14 would "only" require the existing electronic
board and software tools to be modified, without impacting much the safety demonstration.

Figure 3.6: Tools and files involved in the generation of the software

3.3 Safety Principles

The safety is built on top of few principles:
• a B formal model of the function to develop, proved to be coherent, to correctly implement

its specification, and to be programming error-free,
• four instances of the same function running on two microcontrollers (two per microcontroller

with different binaries obtained from diverse tool-chains) and the detection of any divergent
behaviour among the four instances,

• the deferred cross-verification of the programs on the two µC,

13"A Programmable Logic Controller is an industrial digital computer which has been ruggedized and adapted for
the control of manufacturing processes, such as assembly lines, or robotic devices, or any activity that requires high
reliability control and ease of programming and process fault diagnosis." (wikipedia)

14STM32 for example

22 Chapter 3. Architecture and Safety Principles

• outputs require both µC1 and µC2 to be alive and running as one provides energy and the
other one the command,

• output physical states are regularly verified to comply with the memory states, to check the
ability of the board to command its outputs,

• input signals are continuous (0 or 5V) and are made dynamic (addition of a frequency signal)
to prevent the short-circuit current from being considered as high level (permissive) logic.

Stage # Failure CSSP verification
specification 1 Typing error Typechecker tool detects typing error
specification 2 Specified behaviour incompatible Unprovable proof obligation indicates

with invariant properties specification mistake
implementation 3 Typing error Typechecker tool detects typing error
implementation Implemented behaviour incompatible Unprovable proof obligation indicates

with invariant properties implementation mistake
implementation 4 Implemented behaviour incompatible Unprovable proof obligation indicate

with specified behaviour implementation mistake
implementation 5 Overflow capable arithmetic operators Detected by the B-to-HEX compiler

used instead of dedicated ones
implementation 6 IF clause with more than one condition Detected by the B-to-HEX compiler

(B0 language restriction)
implementation 7 LOCAL variables not typed before use Detected by the B-to-HEX compiler

(B0 language restriction)
code generation 8 Syntax errors in the C generated code Detected by the MICROCHIP compiler
code generation 9 Incorrect naming in the C Detected by the linker

generated code
code generation 10 Incorrect memory map Memory overlap detected by the

bootloader

Table 3.1: Verification performed during development

However, as explained in the chapter 1, the electronic board lacks some vital elements to comply
with highest SIL requirements like:

• ensure galvanic isolation between the two half-boards, to prevent that one side of the board
wrongly provides energy to the other side’s outputs,

• activate safety outputs with a sinusoidal signal 15 instead of a continuous signal, to ignore
fault current and activate output.

These missing features are only needed for real-life safety critical systems and do not prevent
developers, whether students, researchers or engineers, from using the CLEARSY Safety Platform
for education and prototype development.

The verification performed by the CLEARSY Safety Platform, either during development or
execution stages, is summarised in tables 3.1 and 3.2.

15The microcontroller needs to be alive to generate the sinusoidal signal.

3.3 Safety Principles 23

Stage # Failure CSSP verification
compilation 11 Wrong binary code generated Detected during execution by safety

library by comparing binary1 and
binary2 variables in memory
with CRC on the same µC

uploading 12 Incorrect transfer between host Detected by bootloader during upload (CRC)
and electronic board and during execution over several cycles

execution 13 RAM error (variables) Detected by comparing binary1
and binary2 variables in memory
with CRC on the same µC

execution 14 RAM error (program) Detected by comparing binary1
and binary2 program in memory
with CRC with the other µC

execution 15 Failure of one µC Detected by handshake between µC1
and µC2 at least every 50 ms

execution 16 Outputs not command-able Detected by checking physical state
and command issued by the software

Table 3.2: Verification performed during execution

4. Programming

4.1 Installation

The starter kit SK0 is composed of:
• The CLEARSY Safety Platform board
• A micro-USB connector to upload the software and to monitor its execution
• A power supply
• 3 switches connected to the 3 digital inputs I1, I2 and I3
• The development environment running on Windows
• The user manual (this book)

Figure 4.1: The CLEARSY Safety Platform starter kit 0

R Warning ! Do not connect the board to your PC before having completed the installation
of the FTDI driver. Sometimes Windows installs another (inadequate) driver that prevents
any further communication with the board. Then removing this driver is mandatory before
installing the FTDI driver.

26 Chapter 4. Programming

The installation of the development environment is as follow:
• download the installer file containing the IDE 1. The file is around 0.4 GB.
• execute the installer and install it to a directory. It requires 3 GB of free space on your hard

disk. Choose preferably a path which does not contain spaces or special characters.
• install the FTDI driver. Execute the file CDM21228_Setup.exe in the directory "Drivers

& runtime". This driver is required to emulate the CSSP serial port over USB in order to
communicate with the board (upload, monitor).

Figure 4.2: The directory where the IDE has been installed. The two scripts to use for respec-
tively configuring and starting the IDE are highlighted in red. Register LCHIP.cmd is executed
automatically during installation. startAB.cmd launches the CSSP IDE.

4.2 A first run

During this first run, we are going to experiment with the full process of programming the
CLEARSY Safety Platform. Let us start by executing the startAB.cmd script to verify that
the installation has been completed. You should obtain the window shown in the figure 4.3 with the
two projects Clock and Combinatorial listed in the left pane.

Figure 4.3: The Atelier CSSP main window when executing the startAB.cmd script

1When you buy a CSSP starter kit, you receive by email a link to download the IDE.

4.2 A first run 27

R Troubleshooting
If the two projects Clock and Combinatorial do not show up on the project list pane (left),
you probably do not have the rights to modify the Atelier B configuration files in the directory
press/bdb.

Power the board by using the power supply. Connect the CLEARSY Safety Platform to your PC
with a micro-USB cable. The board should now have some LEDs on after few seconds. The board
is executing the program that was previously uploaded in memory. If it is the very first use of the
board, the flash memory is empty and the board is literally doing nothing.
Let us create our first CLEARSY Safety Platform project:

• go to the menu Atelier B / New / Project.
• select "Software development" and "Define as CSSP project" (figure 4.4).
• enter a project name that is not yet defined in the project list pane

Figure 4.4: Information required to create a CSSP project

• click "Next" then "Finish".
• a new window requires you to select the board type - keep the default choice "SK0" and press

"OK".
• a new window shows up to configure the number and names of the IOs.
• click on "create new board".
• a graphical representation of the board appears together with two panes on the right that

allow to select the inputs to use and to edit their default name (figure 4.5).

Figure 4.5: The configuration window to select the inputs/outputs and to modify the default naming

28 Chapter 4. Programming

• once your are happy with the configuration, click "Next".
• a summary page is displayed with the exact configuration of the board.
• click on "Finish" - you are asked to confirm the writing of the configuration. As we are

creating the project, there is no previous configuration, so we can safely save it. Click on
"Yes".

• the components of the project are generated in few seconds.
• then you finally get several orange boxes in the main window. The boxes represent the com-

ponents generated from the configuration (IOs numbers and names). The colour represents
their proof status: red/orange is "not proved", green is "proved" (figure 4.6).

Figure 4.6: The CSSP project generated from the board configuration. Boxes are components.

• select all the components with Ctrl-A.
• initiate their proof with Ctrl-0 (or click on the blue button "F0" on the toolbar).
• within 30 seconds, all the components turn to green. The project is completely proved.
• now that the correctness of the project is ensured, we need to compile it. Right click on the

project name (left pane) and select "CSSP Runner"2.
• a new window - the CSSP runner - shows up, representing graphically the different stages of

the compilation (figure 4.7).

Figure 4.7: The CSSP runner shows the different stages of the compilation process

• click the green triangle on the top left to initiate the compilation
• an animation shows how the different stages are completed with (normally) a green tick for

all of these. The memory footprint is displayed on the top during the penultimate stage.
• finally the runner reaches the last stage - upload. You are asked to reset the SK0 board. Push

on the reset button on the board; the board starts blinking as it enters the bootload mode 3

2there is also a "CSSP Runner SK1" to use only with the board SK1.
3This mode is used to modify the program in flash.

4.3 The programming model 29

and downloads the program.
• once the transfer is completed, you are asked to reset the board again, to leave the bootload

mode. The program in flash is copied in memory then its execution is initiated.
• the program does nothing (no modification of the outputs): so normally you should observe

the two outputs O1 and O2 of the boards set to OFF (LEDs off), and the board status LED
blinking slowly.

Congratulations! You have successfully programmed the SK0 board for the first time!

4.3 The programming model

The CLEARSY Safety Platform is aimed at automation functions for cyclic applications, as it
• reads the digital inputs.
• performs computations using a subset of the B language.
• modifies the outputs.
• reads the current time since the central unit started.

The function is executed regularly as often as possible similar to Arduino programming (setup(),
loop()). There is no underlying operating system and no interrupt. There is no delay(). There

Figure 4.8: The pseudo-code of the main loop

is no predefined cycle time. However if the outputs are not set and cross-read every 50 ms by
microcontrollers, the board SK0 enters panic mode and reboots.
Inputs are values captured at the beginning of a cycle (instantaneous values). Input capture is
synchronised on both microcontrollers in order to acquire the same values (and prevent unwanted
reboot because of different behaviour over the two central units). Outputs are maintained from one
cycle to another.

With the CLEARSY Safety Platform, the developer is incited to focus on developing a function,
independently of its transformation and distributed execution.

4.4 Development cycle: the steps

The CSSP development cycle strictly follows the B method which can be summarised as:
• specification model is written first, then comes the implementation model, both using the

same language (B).
• models are proved.
• source code is generated from implementation models.

The whole picture (figure 4.9) contains more details that are going to be explained. Fortunately the
CSSP IDE helps to lower the number of actions to perform when developing an application.

30 Chapter 4. Programming

Figure 4.9: The development cycle with the B method - blue boxes are files, green ones are actions
performed with the CSSP IDE.

4.4.1 CSSP project creation

Creating a CSSP project4 covers actions A , B , and C . The project is created and populated
with the required components (§ 11.1) based on your board configuration (number and naming of
inputs and outputs). There is no need to add other components for simple applications.

R It is not possible to regenerate a project once it has been created from a given configuration,
in case for example you made a spelling mistake that you want to correct. As the components
are automatically generated, you are going to loose all edits. Just create another project and
copy/paste your edits from one project to the other.

4.4.2 Editing CSSP components

Editing CSSP components covers action D . You are entitled to modify the following components:
• user_ctx by

– adding constants (clause CONCRETE_CONSTANTS) (optional),
– providing properties defining constants’ types and constraints (clause PROPERTIES),
– adding sets (clause SETS) (optional).

• user_ctx_i by providing values to your concrete constants and sets (clause VALUES)
• user_logic by modifying the specification of the operation user_logic. By default, the

specification is skip, meaning that all variables defined at specification level are not modified.
The clauses INVARIANT and INITIALISATION could be modified as well.

4A software development project + CSSP option

4.4 Development cycle: the steps 31

• user_logic_i by
– adding variables (clause CONCRETE_VARIABLES) (optional),
– adding typing properties for variables (clause INVARIANT) ,
– adding initialisation values for variables (clause INITIALISATION),
– modifying the body of the operation user_logic (clause OPERATIONS).

4.4.3 Proving CSSP project

Proving CSSP project covers actions E , F , and G . Initiating automatic proof by selecting
one/several/all components and clicking on the "F0" button on the toolbar will start automatic
proof in force 0 of these components. If required, type control and proof obligation generation
are performed automatically. Your project is fully proved if all component boxes are green with
graphical view or 100% proved with classical view (figure 4.10).

Figure 4.10: Proof status with classical view: 100% proved requires to have only zeros in the
"Unproved" column.

4.4.4 Interactively proving CSSP project

Interactively proving CSSP project covers action H . A project not fully proved automatically
does not necessarily mean that the project contains errors. Unproved proof obligations might be
not "adequate"/too complicated for the proof tools and require some guidance from the developer
to complete the mathematical demonstration like starting a proof by contradiction or by cases,
rewriting/simplifying predicates/expressions, etc. Interactive proof is an advanced topic and as such
will be addressed later.

4.4.5 Generating code for CSSP project
Generating code for CSSP project covers actions I and J . The CSSP Runner is triggered by
selecting the project, right-clicking and then by clicking "CSSP Runner" in the drop-down menu. A
new window shows up with a rotating view of the different compilation steps. After clicking the
green triangle button on the top left, the different stages are executed.

• If a stage fails, you get a red cross and the compilation process stops (figure 4.11). If you click
on the "error" text, you get the logs captured during the execution of the related tool. These
logs may be copied by right clicking and selecting the action "copy" from the drop-down
menu.

32 Chapter 4. Programming

Figure 4.11: Clicking on the Error displays the logs captured during the execution of the related
tool.

• If all the compilation stages succeed, you get information about the memory consumption
for both Flash and RAM. Check that you do not exceed 100%5. You are asked to reset the
board to enter bootload mode. As soon as the reset button is pushed, the two upload LEDs
start blinking for around 30 seconds. Then the last stage gets a green tick and you are asked
to reset again the board to leave bootload mode. Once the reset button is pressed, the board
starts executing the software copied in Flash memory within 2 seconds.

Figure 4.12: All green ticks indicate a successful compilation and upload.

4.4.6 Archiving and importing for CSSP project

Archiving and importing for CSSP project cover actions K and L . To archive a project, select
it, right-click and select "archive". Chose the destination directory (the archive file has the .arc
extension). Chose "whole project" then "Next" and "Finish". To import a CSSP project, select
"Workspace/restore project". Click "Next". Select the archive file to import, give a name to the
project and click "Next" then "Finish". A new project appears in the left pane, with the contents of
the archived project.

4.5 Programming the board
Programming the board (figure 4.13) consists of:

• describing, in the component logic, the behaviour of the board,

5In this case, you need to simplify your program to remain within this limit.

4.5 Programming the board 33

• declaring and using constants, defined in the component user_ctx,
• reusing operations defined in the component inputs and in the safety library.

Figure 4.13: The default CSSP project showing the dependencies between the components.

All the operations defined in the components inputs and outputs have to remain unchanged, as well
as the accessing functions get_* defined in the component logic.
The structure of the component logic is seen in figure 4.14. It contains several clauses:

• SEES: contains the list of all seen components.
• ABSTRACT_VARIABLES: the outputs of the board. They are going to be refined in

CONCRETE_VARIABLES (implementable) in the component logic_i.
• INVARIANT: the type of the variables, with some constraints between them (optional).
• INITIALISATION: the first value assigned to the variables. At specification level, initialisa-

tion may be non-deterministic (any value complying with some conditions).
• OPERATIONS: each operation specifies how the modelling variables are modified, preferably

without the algorithmic details.

Figure 4.14: The structure of the logic component (specification).

34 Chapter 4. Programming

Once the specification component has been modified6, it is time to modify the component logic_i.
The structure of the component logic_i (figure 4.15) is quite similar to that of component logic:

• SEES: the implementation should see the same components.
• CONCRETE_VARIABLES: outputs variables have to be concrete (implementable). New

variables (not defined in the component logic) could be added.
• INVARIANT: a concrete type (uint8_t, uint16_t, uint32_t, or BOOL) has to be given to all

concrete variables declared. Board outputs must be declared as uint8_t.
• INITIALISATION: all variables have to be assigned a deterministic value. This value should

comply with its type.
• OPERATIONS: the behaviour of each operation has to be implemented with only imple-

mentable substitutions.

Figure 4.15: The structure of the logic_i component (implementation).

4.5.1 Declaring variables
Figure 4.16 shows how variables are declared side-by-side in specification and implementation:

• first goes a list of variables, either abstract or concrete, separated by commas.
• in the implementation, the pragma SAFETY_VARS is mandatory to indicate that the imple-

mentation contains variables that need to be managed by the safety library.
• the invariant contains a list of predicates, separated by &, where types and constraints are

expressed. Types in implementation are only implementable types.
• the initialisation describes the initial value of the variables. In the specification, the initiali-

sation may be deterministic or non-deterministic. In the implementation, the initialisation
has to be deterministic and to comply with the one in the specification7. Moreover initialisa-
tions in specification are performed "in parallel" by using the operator ||; in implementation,
initialisations are ordered by using the operator ; (sequence).

4.5.2 Declaring constants
Figure 4.17 shows how constants are declared side-by-side in specification and implementation:

6It should mention a minima that the outputs are going to be modified when the operation user_logic is executed.
7If "vv belongs to uint16_t" was the initialisation of the variable vv, then "vv := 0" is a correct initialisation in

implementation, while "vv := -1" is not.

4.5 Programming the board 35

Figure 4.16: Declaring variables in specification and implementation.

• first goes a list of constants, either abstract or concrete, separated by commas.
• in the implementation, the pragma CONSTANTS is mandatory to indicate that the imple-

mentation contains constants that need to be managed by the safety library.
• in the specification, the PROPERTIES contains a list of predicates, separated by &, where

are expressed types and constraints. Properties are only in specification.
• in the implementation, the VALUES sets the values of the constants. Values provided have to

comply with constant properties.

Figure 4.17: Declaring constants in specification and implementation.

R An implementation should contain one and only one pragma: either SAFETY_VARS or CON-
STANTS. That is why two components are made available: user_ctx for hosting constants
and logic for variables and behaviour.

4.5.3 Describing a behaviour
Behaviour is described in OPERATIONS. Operations are populated with substitutions. Substitutions
allow to describe how variables are (conditionally) modified. Available substitutions in specification

36 Chapter 4. Programming

are different from the ones available in implementation. We are going to see a number of these in
what follows.

Specification
In specification, substitutions express the properties that the variables comply with when the
operation is completed independently from the algorithm implemented8. A good practice is to
systematically use the substitution "becomes such that" (Figure 4.18).
A simple general form of the substitution is

var : (var : type(var))

where var is an identifier and type(var) is a set expression compatible with the type of the variable
var. It could also be of the form:

var_list : (predicate_list)

where var_list is a list of identifiers separated by commas and predicate_list is conjunction of
predicates separated by &. Of course, if the value assigned to a variable is well-known, it is also
possible to use the valuation substitution with:

var := value

where value is either a constant name, another variable identifier, a Boolean, or an Integer value. If
none of the variables is going to be modified then use the substitution skip.

Figure 4.18: The substitution "becomes such that" used to specify that O0 and O1 are going to be
modified within their type such that O0 is different from O1.

Implementation
In implementation, several substitutions are available. Some of these are shown in figure 4.19.

• the skip substitution, when the variables are not modified.
• the assignment substitution var := value.
• the sequence substitution ; to order substitutions.
• the IF-THEN-ELSE substitution. Only a single condition is accepted. If several conditions

have to be verified, several IF-THEN-ELSE substitutions have to be nested. Testing con-
ditions have to be simple, hence computations have to be performed independently from
(before) the test9

• the local variable substitution VAR var IN substitutions END. Local variables are used to store
data and results of computation. Before any use of a local variable a substitution "becomes
such that" has to be used to give a type to this local variable.

• the operation call substitution var_list <– operation(var_list) which use 0..n input parameters
and 0..n return parameters.

These substitutions may be used in combination to obtain the final algorithm. The loop substitution
will be introduced later on, in the projects.

8By using post-condition: the properties that are true when the substitution has been executed.
9For example, it is not possible to write IF xx+1<=yy THEN skip END. Instead a local variable has to be declared

and used to compute xx+1. The test is then performed with this local variable.

4.5 Programming the board 37

Figure 4.19: Some substitutions usable in implementation.

Reconciling specification and implementation

If the writing of an implementation is quite straightforward, especially when the logic is not too
complicated, the writing of a specification is far more complex. For example, the figure 4.20 shows

Figure 4.20: Several specification compatible with the implementation.

three different kinds of specification:
• the first one is fully non-deterministic. If one mistake is inserted in the implementation (both

values at IO_OFF for example), it is not detected by the proof.
• the second one is non-deterministic but ensures that both values for O0 and O1 are different.

Errors are detected except if the implementation is the contrary of what it should be.
• the last one is fully deterministic but very close to the implementation. One risk when having

38 Chapter 4. Programming

such close specification/implementation is that we are only proving the copy/paste action
between both models.

It is up to you to determine what kind of specification and more importantly what level of verification
you are looking for. If your model only contains loosely constrained specification, the proof will
not improve much the level of confidence in the algorithm.

II

5 Combinatorial . 41
5.1 Modelling
5.2 Executing
5.3 Testing

6 Clock . 45
6.1 Modelling
6.2 Executing
6.3 Testing

Projects

5. Combinatorial

This first project introduces the combinatorial or asynchronous behaviour of the board. The outputs
are updated as soon as the inputs are modified and not after a given period of time (a delay) which
is a synchronous behaviour.
The equations we would like to implement are:

O0 = I1 and I2 and I3
O2 = not(O1)

O1 will be ON only when all inputs are ON, unless it will be OFF (the AND function over three
Boolean values). O2 is the opposite of O1: O2 is ON when O1 is OFF, and OFF when O1 is ON 1.

5.1 Modelling

The modelling requires three steps:
• The first step is to create a project, to give it a name and select "CSSP project".
• The second step is to add a board (only one) and to change the names of the inputs and

outputs to respectively I1, I2, I3 and O1, O2.
• the third step is to modify the components logic and logic_i to specify and implement the

behaviour.

Listing 5.1: Non-deterministic specification of the operation user_logic�
u s e r _ l o g i c =
BEGIN

O1 : : u i n t 8 _ t | |
O2 : : u i n t 8 _ t

END;� �
1This is a usual practice in the railways to detect if an equipment is failing or has no power supply. If both outputs are

OFF, we know that the system is failing and the situation has to be handled with care.

42 Chapter 5. Combinatorial

For logic, we need to modify the specification of the operation user_logic. We could be
precise and express directly the relationship between inputs and outputs, but for the very first
experiment, we prefer to simply assert that the two outputs O1 and O2 are going to be modified
non-deterministically2 (see listing 11.14).

Listing 5.2: The implementation of the operation user_logic�
u s e r _ l o g i c =
BEGIN

VAR i1_ , i2_ , i 3 _ IN
i 1 _ : (i 1 _ : u i n t 8 _ t) ;
i 2 _ : (i 2 _ : u i n t 8 _ t) ;
i 3 _ : (i 3 _ : u i n t 8 _ t) ;

i 1 _ <−− g e t _ I 1 ;
i 2 _ <−− g e t _ I 2 ;
i 3 _ <−− g e t _ I 3 ;

O1 := IO_OFF ;
IF i 1 _ = IO_ON THEN

IF i 2 _ = IO_ON THEN
IF i 3 _ = IO_ON THEN

O1 := IO_ON
END

END
END;
IF O1 = IO_ON THEN

O2 := IO_OFF
ELSE

O2 := IO_ON
END

END
END� �

For logic_i, the variables 01 and 02 are already defined as CONCRETE
VARIABLES and both initialised with the value IO_OFF. No other variable is required for the
implementation. We only need to modify the body of the operation user_logic (see listing 5.2).
We need three local variables to store the values of the three inputs I1, I2 and I3. So we define three
variables i1_, i2_ and i3_ with the substitution VAR ... IN ... END. The scope of this substitution in
the END keyword, meaning that any use of these three variables outside of this scope will produce
an error message. These three variables are typed prior to any use, by using the "becomes such that"
substitution with the type uint8_t. These three typing substitutions have no effect on the modelling
but are required by the compiler.
The values of the inputs are collected by calling the three operations get_I1, get_I2 and get_I3. The
notation "var <– op" means that the operation op is called and returns one value that is assigned
to the variable var. In our case, i1_, i2_ and i3_ are valued respectively with the values returned
by get_I1, get_I2 and get_I3. The next 8 lines represent the computation of O1: O1 is first set to
IO_OFF and then set to IO_ON only if the three inputs are all equal to IO_ON.

2The var :: type substitution is called non-deterministic because a particular value is provided. In the implementation,
the value assigned to the variable var should belong to uint8_t. We remind you that the input and output digital values
are represented by 8-bit values: IO_OFF and IO_ON.

5.2 Executing 43

R The compiler in its current version does not support multiple testing conditions. Hence IF
THEN ELSE have to be nested.

Finally O2 is computed with the last IF THEN ELSE, based on the value computed for O1.

R The sequence operator ; is not a line terminator like in C. Its role inside an operation3 is to
separate two substitutions. If extra ; are inserted in the model, error messages will be emitted
when checking the model.

5.2 Executing

Now that the modelling is complete, we first need to check and prove the model. Select all the
components by clicking on the central pane of the main window4, then type ctrl+A. Type ctrl+0
to initiate the typecheck, proof obligation generation and proof of all these components. If some
mistake was made, error messages are displayed either in the model editor or the error/warning
pane in the main window. Be sure to correct any mistake before moving on. Finally press ctrl+U
to complete the proof. You should obtain the proof status of the figure 5.1 (the Unproved column
shows only zeros, meaning that the project is fully proved). The project is ready to be compiled.

Figure 5.1: Combinatorial_1 project status

Be sure that your SK0 board is connected with the USB connector to your host. Right-click on
the project name in the left pane and select "CSSP Runner". A new window appears, showing a
carousel of all the steps of the compilation. Click on the green triangle on the top left. All steps are
cleared until the last one where you are asked to reset the SK0 board. Use a pen to push on the
reset button and release it. The board starts to blink as it enters the bootload mode. After around
30s, the last step is cleared (green check) and you are again invited to reset the SK0 board. Push
the reset button and release it. After 2 seconds, the board starts to execute your program.

3It is also used to separate operations
4the one showing all the components of the project.

44 Chapter 5. Combinatorial

5.3 Testing
To test your program, you need to be able to modify the status of the inputs in order to change
the status of the outputs. You need three switches or three wires that you could plug/unplug to
open/close the input circuits. The switches have to be connected to the two right pins as shown on
figure 5.3. The status of the three inputs is indicated by three LEDs. One LED is ON when enough

Figure 5.2: Connecting switches to the board

current is provided through the input circuit, OFF if not.
Connect your switches, change their status and see how the behaviour evolves. You should get the
configurations shown in figure 5.3.

Figure 5.3: Two configurations: not all inputs are ON (left) and only O2 is ON; all inputs are ON
(right) and only O1 is ON.

Exercise 5.1 Create a program which implements the following equations:

O0 = I1 or I2 or I3
O2 = not(O1)

First create a new project and populate it with models similar to combinatorial_1. Then modify
the body of the operation user_logic in the component logic_i to implement a disjunction over
the values of the three inputs. �

6. Clock

This second project introduces the synchronous behaviour of the board. The outputs are updated
regularly after a given period of time (a delay).
The equations that we would like to implement are:

O1 = not(O1) every second (synchronous)
O2 = not(O2) all the time (asynchronous)

O1 changes its status every second between OFF and ON. 02 is the opposite of O1: 02 is ON when
O1 is OFF, and OFF when O1 is ON.

6.1 Modelling

The modelling requires three steps:
• The first step is to create a project, to give it a name and select "CSSP project".
• The second step is to add a board (only one) and to change the names outputs to O1 and O2.

Deselect the inputs as they are not going to be used in the following.
• The third step is to modify the components logic, logic_i, user_ctx and user_ctx_i to specify

and implement the behaviour.

Listing 6.1: Non-deterministic specification of the operation user_logic�
u s e r _ l o g i c =
BEGIN

O1 , O2 : (
O1 : u i n t 8 _ t &
O2 : u i n t 8 _ t &
n o t (O1=O2)

)
END;� �

46 Chapter 6. Clock

For logic, we need to modify the specification of the operation user_logic. We simply assert
that the two outputs O1 and O2 are going to be modified non-deterministically such as O1 and O2
are different (see listing 6.1).

Listing 6.2: Declaration of the constant delta_t in user_ctx�
CONSTANTS

d e l t a _ t
PROPERTIES

d e l t a _ t : u i n t 3 2 _ t &
n o t (d e l t a _ t =0)

END� �
We need to modify user_ctx to introduce a constant representing the duration of the delay

expressed in milliseconds. This constants is named delta_t; it is defined over 32 bits and is different
from 0 (see listing 6.2).

Listing 6.3: Valuation of the constant delta_t in user_ctx_i�
VALUES

d e l t a _ t = 1000
END� �

In user_ctx_i, we provide a value for the constant deltat_t that is compatible with the two
constraints: delta_t is a unsigned integer defined over 32 bits and is different from 0. We choose
the value 1000 1 (see listing 6.3).

Listing 6.4: Operation user_logic in user_ctx_i�
u s e r _ l o g i c =
BEGIN

VAR m s _ t i c k _ c y c l e , s _ t i c k _ c y c l e , t i c k IN
m s _ t i c k _ c y c l e : (m s _ t i c k _ c y c l e : u i n t 3 2 _ t) ;
s _ t i c k _ c y c l e : (s _ t i c k _ c y c l e : u i n t 3 2 _ t) ;
t i c k : (t i c k : u i n t 3 2 _ t) ;

m s _ t i c k _ c y c l e <−− g e t _ m s _ t i c k ;
s _ t i c k _ c y c l e := m s _ t i c k _ c y c l e / d e l t a _ t ;
t i c k := s _ t i c k _ c y c l e mod 2 ;

IF t i c k = 0 THEN
O1 := IO_ON

ELSE
O1 := IO_OFF

END;
IF O1 = IO_OFF THEN

O2 := IO_ON
ELSE

O2 := IO_OFF
END

END
END� �

1Put for 1000 milliseconds.

6.2 Executing 47

For logic_i, We only need to modify the body of the operation user_logic (see listing 6.4).
We need three local variables: ms_tick_cycle representing the number of milliseconds elapsed since
the last reset, s_tick_cycle representing the number of times the delay has elapsed, and tick which
represents the current state of the tick (OFF or ON). We define them with the substitution VAR
... IN ... END. These three variables are typed prior to any use, by using the "becomes such that"
substitution with the type uint32_t.
The number of milliseconds elapsed since the last reset is collected by calling the operation
get_ms_tick. The number of times the delay has elapsed is computed by divided the number of
milliseconds elapsed since the last reset by the duration of the delay deltat_t. Finally the status of
the tick (OFF or ON) is computed with a modulo 2 of the number of times the delay has elapsed.
The output O1 is then set when tick is equal to 0 and reset when equals to 1. Finally O2 is computed
with the last IF THEN ELSE, based on the value computed for O1.

R Do not set the delay deltat_t to a value less than 50 as very quick activation/deactivation of
the output relays are going to kill them.

6.2 Executing
Now that the modelling is complete, we first need to check and prove the model. Select all the
components by clicking on the central pane of the main window2, then type ctrl+A. Type ctrl+0
to initiate the typecheck, proof obligation generation and proof of all these components. If some
mistake was made, error messages are displayed either in the model editor or the error/warning
pane in the main window. Be sure to correct any mistake before moving on. Finally press ctrl+U
to complete the proof. You should obtain the proof status of the figure 6.1 (the Unproved column
shows only zeros, meaning that the project is fully proved).

Figure 6.1: Clock_1 project status

The project is ready to be compiled. Be sure that your SK0 board is connected with the USB
connector to your host. Right-click on the project name in the left pane and select "CSSP Runner".

2the one showing all the components of the project.

48 Chapter 6. Clock

A new window appears, showing a carousel of all the steps of the compilation. Click on the green
triangle on the top left. All steps are cleared until the last one where you are asked to reset the SK0
board. Use a pen to push on the reset button and release it. The board starts to blink as it enters
bootload mode. After around 30s, the last step is cleared (green check) and you are again invited
to reset the SK0 board. Push the reset button and release it. After 2 seconds, the board starts to
execute your program.

6.3 Testing
To test your program, you just need to check that, when running, the behaviour is as expected: 0_1
beating every second and 0_2 is the opposite state of 0_2.

Exercise 6.1 Create a program which implements the following equations:

O1 = not(O1) every second (synchronous)
O2 = not(O2) every 2.5 seconds (synchronous)

First create a new project and populate it with models similar to Clock_1. Add another constant
delta_t1 valued with 2500. Then modify the body of the operation user_logic in the component
logic_i to implement two clocks over the outputs 0_1 and 0_2 . �

III
7 Hardware interface 51
7.1 Power supply
7.2 Reset button
7.3 Microcontrollers 1 & 2
7.4 Serial bus
7.5 Inputs
7.6 Board ID
7.7 Serial channel selector
7.8 Programming & monitoring link
7.9 Outputs
7.10 Electric constraints

8 LEDS on SK0 . 55
8.1 Powered
8.2 Healthy
8.3 High level input signal
8.4 Reboot, bootload or panic modes
8.5 Heartbeat
8.6 High level output signal

9 CSSP Serial Monitor 57

10 Connecting several boards together . . 59

11 Software interface 61
11.1 The interface with the safety library
11.2 The model of the function

12 Troubleshooting . 69
12.1 Upload fails immediately

Appendix

7. Hardware interface

The SK0 board is a 10cm x 10 cm x 2 cm board with a weight of 130g. It offers several hardware
interfaces to interact with that are listed and explained below.

Figure 7.1: CLEARSY Safety Platform Starter Kit 0

7.1 Power supply

It requires +5V DC 500mA. This interface is privileged over USB port, as USB port implementation
varies from one computer/equipment to another. We have encountered situations where not enough
power was provided to the board, leading to erratic behaviour.

52 Chapter 7. Hardware interface

7.2 Reset button

The reset button resets the two microcontrollers at the same time. During the first two seconds after
reset, if the bootloader receives a message from the USB port, it will enter bootload mode. If not,
the program is copied from flash to RAM and starts its execution on both micro-controllers.

7.3 Microcontrollers 1 & 2

These are the two PIC32 micro-controllers 1 installed on the board. They both deliver around 100
DMIPS. As the function defined in user_logic is executed twice in sequence (binary1 than binary2),
the SK0 delivers around 50 DMIPS (not counting the execution time of the sequencer and the safety
library).

7.4 Serial bus

The serial bus is used to connect several SK0 together (see §10.1 for more information). If only one
board is used, this bus is not functional and the board ID has to be 0b0000.

7.5 Inputs

There are 3 inputs on the board named I1, I2, and I3.
One input (see figure 7.2) is made of 3 pins:

Figure 7.2: SK0 input connector

• The ground (GND) is common to all inputs and outputs. In case the board is connected to
another device (an Arduino for example), one of these GND pins has to be connected to the
other device GND.

• The input pin (IN) on which is measured the input voltage.
• The +5V pin provides +5V. It has to be used when the input is a switch and not a power line.

The switch has to be connected to both pins IN and +5V. This way, when the switch is closed,
the current can flow from +5V to IN.

7.6 Board ID

The board ID is made of four bits b0 b1 b2 b3 (see figure 7.3), in order to discriminate the boards
when connected together through the serial bus. There are some constraints when setting board IDs:

• If the board is used alone, its board ID should be 0b0000 (master board).
• If the board is connected to other SK0 board(s) through the serial bus, all board IDs have to

be different and one board should have the board ID 0b0000.

1PIC32MX795F512L with 512KB Flash and 128 KB RAM, delivering 105 DMIPS at 80MHz.

7.7 Serial channel selector 53

Figure 7.3: The board ID set to 0b0001.

If no board ID 0b0000 is present, the board(s) will not upload any new software, as the master
board is supposed to initiate the upload process. From the user point of view, everything is working
properly (from compilation to upload complete) but the program is not flashed in memory and the
board is not updated. So always check for the board ID 0b0000 on your system.
Modifying the board ID during the execution of the program leads to SK0 entering the panic mode.

7.7 Serial channel selector
This selector is used to select either micro-controller 1 or micro-controller 2 when monitoring the
execution of the program. Changing the position of the selector requires reseting the board to be
effective.

Figure 7.4: With the CSSP serial monitor, traces indicate that the micro-controller 1 (mcu 0) is
being tracked.

7.8 Programming & monitoring link
This is a micro-USB interface for programming (flashing) the board and for monitoring its execution.
It could also be used to power the board, but depending on the configuration (PC USB port, USB
cable, etc.) behaviour could be unpredictable.

7.9 Outputs
There are 2 outputs on the board named O1 and O2.

Figure 7.5: SK0 output connector for both O1 and O2

54 Chapter 7. Hardware interface

One output (see figure 7.5) is made of 3 pins:
• The ground (GND) is common to all inputs and outputs. In case the board is connected to

another device (an Arduino for example), one of these GND pins has to be connected to the
other device GND.

• The "Normally Open" output pin A (NOA).
• The "Normally Open" output pin B (NOB).

An output is a switch, open or closed. When the switch is closed, the current can flow from the
pin NOA to NOB (or from NOB to NOA, depending on how the board is connected to the outside
world).

The outputs are not powered by the board. It is your responsibility to connect either NOA or
NOB to a current source.

7.10 Electric constraints
The SK0 board is not expected to directly power external devices. Except for low demand compo-
nents, the board outputs are instead supposed to activate relays which in turn deliver power. Below
are listed the constraints to maximise board durability:

• Input must be 5VDC from the 5VDC of the input pin or external power.
• Maximum output rating by output contact is:

– 1 A at 30VDC and
– 0.3 A at 125 VAC.

• The board is not protected against short circuit. Power consumption on inputs must be less
than 100 mA.

8. LEDS on SK0

The CLEARSY Safety Platform SK0 is equipped with a number of LEDs providing indications of
the board status. Their role is to:

• ensure fast checking that the board executes normally
• help identifying the root cause of unexpected behaviour

They are listed and explained below.

Figure 8.1: The LEDs installed on the SK0

56 Chapter 8. LEDS on SK0

8.1 Powered
This green LED is ON when the board is powered with +5V. If the LED is not ON, check your
power supply.

8.2 Healthy
This green LED is ON when both micro-controllers are powered with +3.3V. This voltage is issued
from the main power supply.

8.3 High level input signal
Each red LED is ON when the electric level of the related input is ON. The input status can also be
checked with the CSSP Serial Monitor (see §9). These indications on the electric level of inputs are
not guaranteed if the board is only powered by the USB connector.

8.4 Reboot, bootload or panic modes
These two blinking (every second) red LEDs indicate that either the board is rebooting (the program
in flash is being copied in memory) or is in bootload mode, erasing the previous program in flash
with a new one. Pushing the reset button is required to enter / leave the bootload mode.
The two red LEDs blinking fast indicate a board in panic mode: the outputs are deactivated (circuits
are open) and the board enters an infinite loop doing nothing.

8.5 Heartbeat
These two green LEDs blink synchronously every second when the board executes the program
in flash memory and is healthy. Heartbeat and Reboot, bootload or panic modes LEDs are
incompatible: either the former or the latter is ON and blinking.

8.6 High level output signal
Each of the two red LEDs is ON when the electric level of the related output is ON. The output
status can also be checked with the CSSP Monitor. These indications of the electric level of outputs
are not guaranteed if the board is only powered by the USB connector.

The outputs are not powered by the board. They are switches. The two red LEDs ON only
indicate that the output circuit is closed.

9. CSSP Serial Monitor

The CSSP Serial Monitor is a feature offered at the project level. It allows to display the log
messages emitted by the selected micro-controller on the serial bus.
It requires:

• one SK0 board to be powered and connected through its the micro-USB port
• the CSSP runner not to be running. The USB communication medium is not shared.

To start the CSSP Serial Monitor, select the project, right-click then select "CSSP Monitor". A new
window shows up, with 3 buttons (Quit, Pause, and Clear) and a central area containing the text
messages emitted by the SK0 board.

Figure 9.1: CSSP Serial Monitor messages

As soon as the board is connected and running, the messages are displayed in sequence every second,
as shown in figure 9.1. To get all messages including those related to the board configuration, reset

58 Chapter 9. CSSP Serial Monitor

the board while the serial monitor is executing.
Then you get the following information:

• A startup message, providing the version number of the software platform.
• The card number and the PIC number being tracked.
• The time elapsed since the last reset (in ms).
• The micro-controller being tracked (0 or 1).
• The time used for the execution of the user_logic operation during the last cycle (in tenths of

ms).
• the inputs status (0: OFF, 1: ON).
• the outputs status (0: OFF, 1: ON).

10. Connecting several boards together

The board SK0 is aimed at education and hence provides a limited number of inputs and outputs, in
order to lower the production price and ease its dissemination. If the systems you are looking for
require more inputs and/or outputs, you are advised to consider the board SK1 with 20 inputs and 8
outputs.
However an "unsupported feature" allows you to connect several boards SK0 together via their
serial bus (see figure 10.1). All the boards are connected through a 7-pin connector (each pin is
propagated at the same position to the next board). A configuration with n boards required n-1
connectors. The last board has to be equipped with a terminator with two wires:

• UC1 RX and UC1 TX
• UC2 RX and UC2 TX

have to be connected together.

Figure 10.1: Connecting several SK0 together

The boards execute exactly the same complete logic, making reference to all inputs and outputs.

60 Chapter 10. Connecting several boards together

Inputs acquired by one board are broadcast to other board through the serial bus, at the cost of
degraded performance (cycle time is increased with the required data exchange between boards, the
higher the number of boards, the longer the cycle time).

Board IDs all have to be different. One board has to have the ID 0 (the master board). The
boards may be connected in any order. The terminator may be installed on any board.

This feature was developed before SK1 was available. It was used to test the concept but many
issues appeared during experiments including jittering distributed clocks. One solution adopted was
to have one board initiating the communication (master) and providing a time reference for the other
boards. This solution ensures more stability but breaks the safety principles (the master board may
be faulty on the time and propagate this error to other boards without means of detection/correction).

This multi-board configuration is provided without any support.

11. Software interface

The software interface (see figure 11.1) is in two main parts:
• the interface with the safety library, containing the definition of all the types (and related

constants) that may be used in a CSSP project, as well as specific operators (arithmetic,
logic),

• the model of the function to program, that has a read-only access to the safety library, the
digital inputs status (OFF/ON), the current time since the last reset/power-on, and the ability
to modify the digital outputs (OFF/ON)

Figure 11.1: CSSP Software Interface

11.1 The interface with the safety library

11.1.1 g_types

Listing 11.1: Integer types defined in g_types�
u i n t 3 2 _ t = 0 . . 4 2 9 4 9 6 7 2 9 5 &
u i n t 1 6 _ t = 0 . . 6 5 5 3 5 &
u i n t 8 _ t = 0 . . 2 5 5 &� �

The component g_types defines the 3 integer types (listing 11.1) that must be used for imple-
menting arithmetic computations on 8, 16 and 32 bits. No other integer type is available.

62 Chapter 11. Software interface

Components have to define a read-only access (clause SEES - listing 11.2) to the component
g_types in order to be able to use any of these 3 types.

Listing 11.2: Clause SEES to insert in the referring component�
SEES

g _ t y p e s� �
11.1.2 g_operators

6 bit-wise operators are defined (listing 11.3) for each supported type: uint8_t, uint16_t and uint32_t.
These operators are shift-left (sll), shift-right (srl), negation (not), conjunction (and), disjunction
(or) and exclusive disjunction (xor). They are defined as constant total functions:

• sll and srl have two parameters: the unsigned integer value to shift, the number of shifts to
perform.

• not has one parameter: the unsigned integer value to negate.
• and, or and xor have two parameters: the unsigned integer values on which to perform logic

operation.

Listing 11.3: 32-bit bit-wise operators defined in g_operators�
b i t w i s e _ s l l _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 8 _ t −−> u i n t 3 2 _ t &
b i t w i s e _ s r l _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 8 _ t −−> u i n t 3 2 _ t &
b i t w i s e _ n o t _ u i n t 3 2 : u i n t 3 2 _ t −−> u i n t 3 2 _ t &
b i t w i s e _ a n d _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &
b i t w i s e _ x o r _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &
b i t w i s e _ o r _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &� �

3 arithmetic operators are defined (listing 11.4) for each supported type: uint8_t, uint16_t and
uint32_t. These operators are addition (add), subtraction (sub), and multiplication (mul).
They are defined as constant total functions with two parameters: the unsigned integer values on
which to perform arithmetic operation.

Listing 11.4: 32-bit arithmetic operators defined in g_operators�
a d d _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &
s u b _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &
m u l _ u i n t 3 2 : u i n t 3 2 _ t ∗ u i n t 3 2 _ t −−> u i n t 3 2 _ t &� �

These operators have been defined to ease the overflow proof1. With the CSSP, these operators are
defined as a modulo (upper bound +1) of the result of the operation. For example

add_uint32(x1, x2) = (x1+x2) mod (MAX_UINT32+1)

where MAX_UINT32 is the upper bound of the type uint32_t. This way, the result always remains
in the type of the function (8, 16 or 32 bits),the proof is thereby eased and made more automatic.

These logic and arithmetic constants have been implemented in the safety library. So they may
be used directly in your implementation.

1With B, the result of an addition has to remain in its type. For example, the substitution val := 255+255 cannot be
proved if val is defined as uint8_t as the result (512) exceeds the upper bound of the type. Usually this is solved by
adding constraints on operands.

11.1 The interface with the safety library 63

11.1.3 io_constants
This component defines two types (listing 11.5):

• TIME, defined over 32-bit integers, used to measure time (expressed in ms) with the operation
get_ms_tick().

• IO_STATE, defined over 8-bit integers, contains the two valid states of the inputs and outputs:
IO_OFF and IO_ON. The two values are chosen such that it is very unlikely that a memory
perturbation produces the other valid value2.

Listing 11.5: Constants defined in io_constants�
ABSTRACT_CONSTANTS

TIME ,
IO_STATE

CONCRETE_CONSTANTS
IO_ON ,
IO_OFF

PROPERTIES
TIME = u i n t 3 2 _ t &
IO_STATE = u i n t 8 _ t &� �

11.1.4 lchip_configuration
This component defines three constants (listing 11.6) representing the maximum number of modules,
inputs and outputs. This component is mainly aimed at easing the generation of source code and is
of little interest for the developer.

Listing 11.6: Constants defined in lchip_configuration�
MAX_NB_MODULES : u i n t 8 _ t &
MAX_NB_INPUTS : u i n t 8 _ t &
MAX_NB_OUTPUTS : u i n t 8 _ t &� �

11.1.5 lchip_interface
This component defines several functions:

• get_ms_tick, which returns the number of milliseconds elapsed since the last rest/power-on
(listing 11.7),

• read_global_input, used to read the status of the digital inputs (used by the component
inputs),

• write_global_output, used to modify the status of the digital outputs (used by the component
outputs).

Listing 11.7: Constants defined in lchip_interface�
o u t <−− g e t _ m s _ t i c k =
PRE

o u t : u i n t 3 2 _ t
THEN

o u t := m s _ t i c k
END;� �

2Setting an output with a value different from IO_OFF or IO_ON leads the board to enter panic mode.

64 Chapter 11. Software interface

11.1.6 user_configuration

This component defines several constants (listing 11.8) representing the number of modules, inputs,
outputs, and their configuration (IDs). This component is mainly aimed at easing the generation of
source code and is of little interest for the developer.

Listing 11.8: Constants defined in user_configuration�
CONCRETE_CONSTANTS

NB_MODULES,
NB_INPUTS ,
NB_OUTPUTS,

modu le_secu_ ids ,
modu le_nb_ inpu t s ,
modu le_nb_ou tpu t s ,

i n p u t _ m o d u l e _ i d s ,
i n p u t _ l o c a l _ i d s ,

o u t p u t _ m o d u l e _ i d s ,
o u t p u t _ l o c a l _ i d s� �

11.2 The model of the function

The model of the function to program contains 5 components; only two of these may be modified:
• user_ctx (and its implementation user_ctx_i), which contains only constants,
• logic (and its implementation logic_i), which contains only variables and operations.

11.2.1 user_component

This component contains the top-level function, user_app (listing 11.9), in charge of reading inputs
(operation read_inputs), performing computation (operation user_logic) and modifying outputs
(operation write_outputs). This component should not be modified.

Listing 11.9: The top-level operation user_app�
u s e r _ a p p =
BEGIN

d i v e r g e n c e _ t e s t _ v a r := 0 ;
r e a d _ i n p u t s ;
u s e r _ l o g i c ;
w r i t e _ o u t p u t s

END;� �
11.2.2 user_ctx

This component contains the constants defined for the function to program.

The specification component, user_ctx (listing 11.10), has to declare the constants (clause
CONCRETE_CONSTANTS) and their properties (clause PROPERTIES).

11.2 The model of the function 65

Listing 11.10: The DELTA_T constant from the project Clock�
CONCRETE_CONSTANTS

DELTA_T
PROPERTIES

DELTA_T : u i n t 3 2 _ t� �
The implementation component, user_ctx_i (listing 11.11), has to provide values (clause

VALUES) to the constants defined in the component user_ctx.

Listing 11.11: Value for the DELTA_T constant from the project Clock�
VALUES

DELTA_T = 1000 / / 1000 ms == 1 s� �
11.2.3 inputs

This component should not be modified.
It contains:

• the variables containing the status of the digital inputs (naming defined by the developer
during the creation of the project). They are all defined as 8-bit integers with values in
{IO_OFF, IO_ON}. These variables cannot be modified by other components, only updated
when calling the operation read_inputs.

Listing 11.12: The declaration of the input variables�
b o a r d _ 0 _ I 1 : u i n t 8 _ t &

b o a r d _ 0 _ I 2 : u i n t 8 _ t &
b o a r d _ 0 _ I 3 : u i n t 8 _ t� �

• the operations get_board_ (the ending depends on the names of the variables) return the
status of each digital input, as read by the operation read_inputs. These operations are called
by the operation user_logic (component logic_i).

Listing 11.13: The operations get_board_�
po <−− g e t _ b o a r d _ 0 _ I 1 =

BEGIN
po := b o a r d _ 0 _ I 1

END;

po <−− g e t _ b o a r d _ 0 _ I 2 =
BEGIN

po := b o a r d _ 0 _ I 2
END;

po <−− g e t _ b o a r d _ 0 _ I 3 =
BEGIN

po := b o a r d _ 0 _ I 3
END� �

• the operation read_inputs, modifying the input status variables with the latest physical status
read by the board (this operation is called by the top-level operation user_app).

66 Chapter 11. Software interface

Listing 11.14: Constants defined in g_operators�
r e a d _ i n p u t s =
BEGIN

b o a r d _ 0 _ I 1 <−− r e a d _ g l o b a l _ i n p u t (0) ;
b o a r d _ 0 _ I 2 <−− r e a d _ g l o b a l _ i n p u t (1) ;
b o a r d _ 0 _ I 3 <−− r e a d _ g l o b a l _ i n p u t (2)

END;� �
11.2.4 logic

This component has to be modified by the developer:
• modify the specification of the operation user_logic (clause OPERATIONS) in the specifica-

tion model logic.mch (listing 11.15).

Listing 11.15: Variables and operation user_logic specified in logic.mch�
ABSTRACT_VARIABLES

board_0_O1 ,
board_0_O2

INVARIANT
board_0_O1 : u i n t 8 _ t &

board_0_O2 : u i n t 8 _ t
INITIALISATION

board_0_O1 : : u i n t 8 _ t | |
board_0_O2 : : u i n t 8 _ t

OPERATIONS
u s e r _ l o g i c = s k i p ;� �

• if required declare additional variables in the implementation model logic_i.imp (clause
CONCRETE_VARIABLES), then add a type (clause INVARIANT) and an initialisation
(clause INITIALISATION) for each of these variables.

• modify the implementation of the operation user_logic (clause OPERATIONS) in the imple-
mentation model logic_i.imp (listing 11.16).

Listing 11.16: Variables and operation user_logic implemented in logic_i.imp�
CONCRETE_VARIABLES

board_0_O1 ,
board_0_O2

INVARIANT
board_0_O1 : u i n t 8 _ t &

board_0_O2 : u i n t 8 _ t
INITIALISATION

board_0_O1 := IO_OFF ;
board_0_O2 := IO_OFF

OPERATIONS
u s e r _ l o g i c = s k i p ;� �

This component also contains operations (listing 11.17) to get access to the output status variables,
named get_board_*, that are generated automatically from the board configuration (naming).
The operations get_board_ should not be modified.

11.2 The model of the function 67

Listing 11.17: Constants defined in g_operators�
po <−− get_board_0_O1 =

BEGIN
po := board_0_O1

END;

po <−− get_board_0_O2 =
BEGIN

po := board_0_O2
END� �

11.2.5 outputs
This component should not be modified.
It contains the operation write_outputs (listing 11.18) that modifies the physical output status with
the current output status variables read by the operations get_board_ (this operation is called by the
top-level operation user_app).

Listing 11.18: The write_outputs operation defined in outputs�
w r i t e _ o u t p u t s =

VAR
l s b

IN
l s b : (l s b : u i n t 8 _ t) ;

l s b <−− get_board_0_O1 ;
w r i t e _ g l o b a l _ o u t p u t (0 , l s b) ;

l s b <−− get_board_0_O2 ;
w r i t e _ g l o b a l _ o u t p u t (1 , l s b)

END� �

12. Troubleshooting

The CLEARSY Safety Platform combines several technologies which are constrained to fit the
safety requirements. Most errors are linked to these restrictions (not all the B0 language is supported
in implementation; additional information is required).
Some common sources of error:

• Using in implementation non-supported operators: +, -, and *. These operators are likely to
generate overflow. The integer division / does not generate overflow and as such can be used.

• Using in implementation non-supported types: INT, NAT, and STRING.
• Writing a 32-bit unsigned int into a 16-bit or 8-bit.
• Writing a 16-bit unsigned int into a 8-bit.
• Allocating too much memory: table 49k of uint8_t == 100% memory
• Too many computations preventing inter-MCU verifications (browsing 29k cells of a table)
• Panic mode is obtained when there is a memory problem, the program transfer from host to

SK0 was interrupted (CRC error) or when the board is unable to perform MCU verification
on time.

Most error messages linked to models appear in the model editor (typecheck, compliancy with
implementable language) or in the bottom pane (Errors & warnings) of the main window. Some
more insidious errors located in the double compilation chain (DCC) may appear:

• in the runner window
• or in the dcc_build/log directory. For each compilation, one log file is generated (project

name, date, time). For this file, search for error messages at the end of the file like "bxml
error".

12.1 Upload fails immediately
During the compilation process, everything goes well except the last step which fails immediately.
If the board is indeed connected with a USB cable able to transmit information (and not only
provide electricity), then it is probably due to the USB Serial Port management by Windows. The
SK0 board requires such a port to ensure communication with the PC used for development. The
USB serial ports are allocated by Windows when you connect a board on USB but sometimes

70 Chapter 12. Troubleshooting

Windows fails to release the port; another serial port is then used, chosen among the one’s available
from COM2 to COM10. If COM11 is reached, it is not possible to set up communication between
the board and the PC. To check if it is your case, open the Device Manager application and have a
look at the Ports (COM & LPT) section (Fig. 12.1). If it shows COM11 or greater, it is not possible
to establish a communication between the PC and the board.

Figure 12.1: USB serial ports from the Device Manager

In this case, you need to reuse one port already allocated (in use). Right-click on the USB
Serial Port item, then select Properties. A new windows shows up: switch to Port Settings, then
click on the button Advanced. The window Advanced Settings shows up; the first field is COM
Port Number: it indicates the current port used by the board. You need to select another one from
COM2 to COM10 (shown as in use). Select it and confirm that you want to use this COM port.
Close the windows and try to upload again the software on the board. It should work now.

Figure 12.2: USB serial port advanced settings

Glossary

Vocabulary 12.1 — Atelier B. CASE tool implementing the B method
Vocabulary 12.2 — CSSP. Abbreviation for CLEARSY Safety Platform
Vocabulary 12.3 — Proof Obligation. Mathematical predicate that needs to be demonstrated to
prove a model. Non trivial models are made of hundreds/thousands of proof obligations.
Vocabulary 12.4 — SIL{3/4}. Safety Integrity Level. Defines the level of safety (the higher the
safer) of a system - ranging between 0 and 4. Also refers to the level of danger of a system: a SIL4
system is considered to be able to kill people in case of catastrophic failure while a SIL0 system
has no chance to harm someone.
Vocabulary 12.5 — 2oo2. Put for "2 out of 2". Means that a computation performed twice with
different means is successful only if the two computations are identical. 2oo3 allows to have a
system operated in the case that one of its three computers is behaving differently from the two
others.

Symbols Table

This appendix contains the description of reserved keywords and of the operators of B language,
sorted by ascending ASCII order.
For each reserved keyword or operator, this chapter provides:

• its ASCII notation,
• its mathematical notation, if it differs from its ASCII notation.
• its priority level. The priority level corresponds to the priority level during the syntactic

analysis. The higher the priority level of an operator, the more it attracts operands. For
example, if the operators op40 and op250 are respectively of 40 and 250 priority, then the
expression x op40 y op250 z is analysed as x op40 (y op250 z)

• its associative properties (L for associative to the left or R for associative to the right). If
two binary operators named op have the same priority, then: x op y op z will be analysed as
(x op y) op z if op is associative to the left; and as x op (y op z) if op is associative to the
right.

• its description.

B Language Keywords and Operators version 1.8.9

ASCII Math. Pri. As. Description

!  250 For any

"  String or definition file delimiter

 250 There exists

$0 Value of data before substitution

%  250 Lambda expression

&  40 L Conjunction (logical AND)

' 250 L Access to a record field

(Open bracket

) Close bracket

* × 190 L Multiplication or Cartesian product

x ** y x y 200 R Power of

+ 180 L Addition

+-> 2 125 L Partial function

+->> 6 125 L Partial surjection

, 115 L Comma

- 180 L Subtraction

- 210 Unary minus

--> 3 125 L Total function

-->> 7 125 L Surjection

-> k 160 L Insert at the start of a sequence

. 220 R Renaming or data separator used

in the operators , , , , , , 

.. 170 L Interval

/ 190 L Integer division

/:  160 L Non-belonging

/<: - 110 L Non-inclusion

/<<:  110 L Strict non-inclusion

/=  160 L Not equal

/\  160 L Intersection

/|\ q 160 L Restriction of a sequence to the
head

:  60 L Belonging

: 120 L Record field

:: : L Becomes part of (belonging)

:= L Becomes equal to

; 20 L Sequencing for substitution or
composition of relations

ASCII Math. Pri. As. Description

< 160 L Strictly lesser than, or definition
file delimiter

<+ + 160 L Overload a relation

<-> 1 125 L Set of relations

<- j 160 L Insert at end of sequence

<-- c L Operation output parameters

<:  110 L Inclusion

<<:  110 L Strict inclusion

<<| a 160 L Subtraction to the domain

<=  160 L Lesser than or equal to

<=>  60 L Equivalence

<| r 160 L Restriction to the domain

= 60 L Equals

== Definition

=>  30 L Implies

> 160 L Strictly greater than, or definition
file delimiter

>+> 4 125 L Partial injection

>-> 5 125 L Total injection

>->> 9 125 L Total bijection

><  160 L Direct product of relations

>=  160 L Greater than or equal to

ABSTRACT_CONSTANTS
 ABSTRACT_CONSTANTS clause

ABSTRACT_VARIABLES
 ABSTRACT_VARIABLES clause

ANY
 ANY substitution

ASSERT ASSERT substitution

ASSERTIONS ASSERTIONS clause

BE LET substitution

BEGIN BEGIN substitution

BOOL Set of the Boolean values

CASE CASE substitution

CHOICE CHOICE substitution

CONCRETE_CONSTANTS
 CONCRETE_CONSTANTS

clause

CONCRETE_VARIABLES
 CONCRETE_VARIABLES clause

CONSTANTS CONSTANTS clause

CONSTRAINTS CONSTRAINTS clause

ASCII Math. Pri. As. Description

DEFINITIONS DEFINITIONS clause

DO WHILE substitution

EITHER CASE substitution

ELSE IF or CASE substitution

ELSIF IF substitution

END Terminator of clauses or of
substitutions BEGIN, PRE,
ASSERT, CHOICE, IF, SELECT,
ANY, LET, VAR, CASE and
WHILE

EXTENDS clause EXTENDS

FALSE Literal Boolean constant “false”

FIN
F Set of finite sub-sets

FIN1 F1 Set of finite non empty sub-sets

IF Substitution IF

IMPLEMENTATION IMPLEMENTATION clause

IMPORTS IMPORTS clause

IN BE or VAR substitution

INCLUDES INCLUDES clause

INITIALISATION INITIALISATION clause

INT Set of implementable relative
integers

INTEGER
Z Set of relative integers

INTER
I Quantified intersection

INVARIANT INVARIANT clause or WHILE
substitution

LET
 LET substitution

LOCAL_OPERATIONS LOCAL_OPERATIONS clause

MACHINE MACHINE clause

MAXINT Largest implementable integer

MININT Smallest implementable integer

NAT Set of implementable natural
integers

NAT1 NAT1 Set of non-empty implementable
natural integers

NATURAL
N Set of natural integers

NATURAL1 N1 Set of non-empty natural integers

OF CASE substitution

OPERATIONS OPERATIONS clause

B Language Keywords and Operators version 1.8.9

ASCII Math. Pri. As. Description

OR CHOICE or CASE substitution

PI  Quantified integer product

POW
P Set of sub-sets

POW1 P1 Set of non-empty sub-sets

PRE Precondition substitution

PROMOTES PROMOTES clause

PROPERTIES PROPERTIES clause

REFINES REFINES clause

REFINEMENT REFINEMENT clause

SEES SEES clause

SELECT Substitution SELECT

SETS SETS clause

SIGMA  Quantified product

STRING Set of character strings

THEN Precondition substitution,
ASSERT, IF or CASE

TRUE Literal Boolean constant “true”

UNION
U Quantified union

USES USES clause

VALUES VALUES clause

VAR VAR substitution

VARIANT WHILE substitution

VARIABLES VARIABLES clause

WHEN SELECT substitution

WHERE ANY substitution

WHILE WHILE substitution

[Image, or start of sequence

[] Empty sequence

\/ u 160 L Union

\|/ w 160 L Restrict a sequence to the end

] Image, or end of sequence

^) 160 L Concatenate sequences

arity Tree node arity

bin Binary tree in extension

bool Predicate boolean cast

btree Binary trees

ASCII Math. Pri. As. Description

card Cardinal

ceiling Ceiling function

closure(R) R * Reflexive closure of a relation

closure1(R) R + Closure of a relation

conc Concatenation of a succession

const Tree constructor

dom Domain of a function

father Father of a tree node

first First element in a sequence

floor Floor function

fnc Transformed into a function

front Front of a sequence

id Function identity

infix Infix formulae of a tree

inter General intersection

iseq Set of injective sequences

iseq1 iseq1 Set of injective non-empty
sequences

iterate(R, n) R n Iteration of a relation

last Last element in a sequence

left Left tree

max Maximum in a set of integers

min Minimum in a set of integers

mirror Mirror of a tree

mod 190 L Modulo

not ¬ Logical not

or  40 L Disjunction (logical OR)

perm Set of permutations (bijective
sequences)

postfix Postfix formulae of a tree

pred Predecessor of an integer

prefix Prefix formulae of a tree

prj1 prj1 First projection of a relation

prj2 prj2 Second projection of a relation

ran Range of a relation

rank Rank of a tree node

ASCII Math. Pri. As. Description

real Conversion from integer to real

rec Record in extension

rel Relation transform

rev Reverse of a sequence

right Right tree

seq Set of sequences

seq1 Set of non-empty sequences

size Size of a sequence

sizet Size of a tree

skip Null substitution

son ith son of a tree

sons Sons of a tree node

struct Set of records

subtree Subtree of a tree

succ Successor

tail Tail of a sequence

top Top of a tree

tree Trees

union Generalized union

{ Start of set

{} Ø Empty set

| 10 L Vertical bar used in , , , , ,

, , { | }

|->  160 L Maplet

|> R 160 L Restriction to the range

|>> A 160 L Subtraction to the range

|| 20 L Simultaneous substitutions, or
parallel product of relations

} End of set

r~ r -1 230 L Reverse relation

Bibliography

Books
[Abr96] J. R. Abrial. The B-book: assigning programs to meanings. New York, NY, and USA:

Cambridge University Press, 1996 (cited on page 11).

Articles
[Ben11] Marc V. Benveniste. “On Using B in the Design of Secure Micro-controllers: An Experi-

ence Report”. In: Electr. Notes Theor. Comput. Sci. 280 (2011), pages 3–22 (cited on
page 11).

[Lec08] Thierry Lecomte. “Safe and Reliable Metro Platform Screen Doors Control/Command
Systems”. In: LNCS 5014 (2008). Edited by Jorge Cuéllar, T. S. E. Maibaum, and Kaisa
Sere, pages 430–434 (cited on page 11).

[Lec09] Thierry Lecomte. “Applying a Formal Method in Industry: A 15-Year Trajectory”. In:
LNCS 5825 (2009). Edited by Marıa Alpuente, Byron Cook, and Christophe Joubert,
pages 26–34 (cited on page 11).

[Lec16] Thierry Lecomte. “Double cœur et preuve formelle pour automatismes SIL4”. In: 8E-
Modèles formels/preuves formelles-sûreté du logiciel (2016) (cited on page 11).

Index

A

Acknowledgements .9

B

Book organisation . 8

T

To the instructor .8
Tool support . 8

W

Who this book is for . 8

	1 Preface
	1.1 Tool support
	1.2 Who this book is for
	1.3 To the instructor
	1.4 Book organisation
	1.5 Acknowledgements

	2 Introduction
	Part I — Description
	3 Architecture and Safety Principles
	3.1 Introduction to safety
	3.2 Architecture
	3.3 Safety Principles

	4 Programming
	4.1 Installation
	4.2 A first run
	4.3 The programming model
	4.4 Development cycle: the steps
	4.5 Programming the board

	Part II — Projects
	5 Combinatorial
	5.1 Modelling
	5.2 Executing
	5.3 Testing

	6 Clock
	6.1 Modelling
	6.2 Executing
	6.3 Testing

	Part III — Appendix
	7 Hardware interface
	7.1 Power supply
	7.2 Reset button
	7.3 Microcontrollers 1 & 2
	7.4 Serial bus
	7.5 Inputs
	7.6 Board ID
	7.7 Serial channel selector
	7.8 Programming & monitoring link
	7.9 Outputs
	7.10 Electric constraints

	8 LEDS on SK0
	8.1 Powered
	8.2 Healthy
	8.3 High level input signal
	8.4 Reboot, bootload or panic modes
	8.5 Heartbeat
	8.6 High level output signal

	9 CSSP Serial Monitor
	10 Connecting several boards together
	11 Software interface
	11.1 The interface with the safety library
	11.2 The model of the function

	12 Troubleshooting
	12.1 Upload fails immediately

