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Statements

• Modelling and proof problems are tightly
linked

• In my talk, only proof is questionnable

• Some experiences are reported:

– Proof of (large) B models

– Using several theorem provers



Proof work

• Several kinds of modellings (Event-B/B)

• Several tools with different application 
domains (the « how »)

• Several ways of adding proof information:
– Assertions (model)

– Mathematical rules

– (Generic) demonstrations

• Successful proof: choreography



Provers / solvers

• Main prover

– Top-down: applications of simplification mechanisms and 
mathematical rules, triggered by hypotheses

– Bottom-up: generation of new hypotheses (combination) 
in  relation with the goal or with hypotheses in relation 
with the goal ….



Main prover architecture
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Main prover architecture
Rules and tactics

Rule packages

Backward

Forward

Rewriting 

Patchprover

User Rule

User Tactics

Operation( AssertionLemmas ) & Pattern( ST_7 <: E ) & dd & ah(Mhyp(ST_7: F)) &p0

Operation filter Goal filter Interactive commands

ff(0) & ah(Mhyp(P => Sgoal(H => G | G))) & p0



How come an interactive 
demonstration becomes a tactic ?

• Replayable as it is

• Or without minor modification

• Or by abstracting parameters

• Bottom-up: generic (abstract) demo is not search first



From demo to tactic



How efficient are tactics ?  



Provers / solvers

• Main prover

– Top-down: applications of simplification mechanisms and 
mathematical rules, triggered by hypotheses

– Bottom-up: generation of new hypotheses (combination) 
in  relation with the goal or with hypotheses in relation 
with the goal ….

• Predicate prover

– tableaux method

– Initialy developed to validate main prover math. rules



About prover qualification
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Provers / solvers

• Main prover
– Top-down: applications of simplification mechanisms and 

mathematical rules, triggered by hypotheses
– Bottom-up: generation of new hypotheses (combination) 

in  relation with the goal or with hypotheses in relation 
with the goal ….

• Predicate prover
– tableaux method
– Initialy developed to validate main prover math. rules

• Arithmetic prover
– linear equations

• Set solver



Application domains
the « how » alongside the « why »

• Main prover:
– The more versatile
– Rule database (2600 rules) developed through domain

specific projects

• Predicate prover:
– Powerful when applied to propositional logic
– Requires few hypotheses to work efficiently

• Arithmetic prover
– Only with pure linear equations

• Set solver
– Efficient to simplify set based expressions



Proof algorithm
considering only proof requiring more than one step

• Have a look at the goal

• Search for related hypotheses

• Identify (nearly) applicable rules

• Identify missing information
– New hypothesis

– New simplification / resolution rule

• Add information

• One step ahead: try to simplify/solve



Application: DMS Sequencer
• Event-B model of an inertia central SW sequencer

• Used for SW validation

• 11 refinements

• 30% automatic proof only …



Model: dms00
Proof obligation: Swap.21



Swap.21

• Demonstrate that ∑t1 D(t1) = ∑t2 D’(t2)

• 17 local hypotheses

• 39 hypotheses (16 for typing)

• 250 « related » mathematical rules

• To help identifying missing bits, 
holding guards are bold 



Additions

• 23 rules added to the whole project

∑x P(E) = ∑y Q(F) if

- P(x)=Q(y) if x is replaced by y in P(x)

- E(x)=F(y) if x is replaced by y in E(x)

- x is free in Q and F, y is free in P and E



Validating rules for new domains



The resulting proof tree: 136 steps



Zoom on the proof tree
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Some metrics

Split case 2

Apply lemma 16

Rewrite 20

Prove 27

Sanitize 71



Application: ATP

• Automatic metro pilot (Beijing metro)

• Used for generating Ada software

• 127 components (model, refinement, 
implementation)

• 65 000 proof obligations

• 98 % automatically proved (1300 to prove)



Model: uevol_loc_output_2_i
Proof obligation: iterateOnBlock.58



iterateOnBlock.58 
« Size does matter »

• Demonstrate that locAbsExt$2 is
implementable 32-bit integer

• 34 local hypotheses

• 1380 hypotheses

• Anticipating thousands steps demonstration …



The proof tree
No need for zoom
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Some metrics

• Up to 2500 hypotheses in the middle of the 
proof

• 1800 added rules

• 800 rules in the Patchprover (32%)

• 30 tactics and 200 demonstrations to 
demonstrate the whole projet



Application: MPU

• Event B model of a smart card electronic
device

• Used for VHDL generation

• 18 levels of refinement

• 40% automatic proof



Model: mpu_017
Proof obligation: psi.1

To demonstrate that ea7$2 …. hmmmm …. points to the correct memory cell



Proof tree

Prove

Rewrite



Some metrics

• 20 tactics

• No  added rule !

• 1 000 proof obligations in total



A real failure …

• ATP model including a constant representing clock
ticks over time (function: N 3 BOOL)

• Specified by its properties:

C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}



A real failure … (cntd)

• In B, constants needs to be non-miracle

• E.g: values should be given in implementation
and prove to comply with properties

• For this infinite function, we decided to go for an 
admission rule and a paper demonstration

• I wrote the paper demonstration, cross-read by 2 
other « experts »



A real failure … (the end)

• Exploit:
• add trivialhypothesis: C(m+124)= C(m+124)
• Replace C(m+124) by its values: TRUE = FALSE
• You can prove the project with this property

• Detected by independent assessor

C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}



Conclusion & remarks

• « why » is deeply related to « how »
• Guru/experts required for first shot at new (kind of) 

modelling
• Transforming demos into tactics enables to save proof work
• When automatic proof fails, interactive proof almost 

requires to disengage all proof mechanisms and use the 
prover as a smart “calculette”

• Proof maintenance could be a nightmare
• Provers are almost stuck because of potential proof 

regressions


