
Yet Another Theorem Prover
in Distress

Thierry Lecomte

ClearSy

thierry.lecomte@clearsy.com

Statements

• Modelling and proof problems are tightly
linked

• In my talk, only proof is questionnable

• Some experiences are reported:

– Proof of (large) B models

– Using several theorem provers

Proof work

• Several kinds of modellings (Event-B/B)

• Several tools with different application
domains (the « how »)

• Several ways of adding proof information:
– Assertions (model)

– Mathematical rules

– (Generic) demonstrations

• Successful proof: choreography

Provers / solvers

• Main prover

– Top-down: applications of simplification mechanisms and
mathematical rules, triggered by hypotheses

– Bottom-up: generation of new hypotheses (combination)
in relation with the goal or with hypotheses in relation
with the goal ….

Main prover architecture

Processing
Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

Interactive
Prover

Optimized
Proof

Obligation
Loading

Main prover architecture
Rules and tactics

Rule packages

Backward

Forward

Rewriting

Patchprover

User Rule

User Tactics

Operation(AssertionLemmas) & Pattern(ST_7 <: E) & dd & ah(Mhyp(ST_7: F)) &p0

Operation filter Goal filter Interactive commands

ff(0) & ah(Mhyp(P => Sgoal(H => G | G))) & p0

How come an interactive
demonstration becomes a tactic ?

• Replayable as it is

• Or without minor modification

• Or by abstracting parameters

• Bottom-up: generic (abstract) demo is not search first

From demo to tactic

How efficient are tactics ?

Provers / solvers

• Main prover

– Top-down: applications of simplification mechanisms and
mathematical rules, triggered by hypotheses

– Bottom-up: generation of new hypotheses (combination)
in relation with the goal or with hypotheses in relation
with the goal ….

• Predicate prover

– tableaux method

– Initialy developed to validate main prover math. rules

About prover qualification

11

Predicate
Prover

Demonstration
Replayer

Inference
Engine

Rule
Database

Prover

Reviewed
By Experts

Audited
By Independent

Experts
Qualified

Manual
Demonstration

Reviewed
By Experts

Reviewed
By Experts

Provers / solvers

• Main prover
– Top-down: applications of simplification mechanisms and

mathematical rules, triggered by hypotheses
– Bottom-up: generation of new hypotheses (combination)

in relation with the goal or with hypotheses in relation
with the goal ….

• Predicate prover
– tableaux method
– Initialy developed to validate main prover math. rules

• Arithmetic prover
– linear equations

• Set solver

Application domains
the « how » alongside the « why »

• Main prover:
– The more versatile
– Rule database (2600 rules) developed through domain

specific projects

• Predicate prover:
– Powerful when applied to propositional logic
– Requires few hypotheses to work efficiently

• Arithmetic prover
– Only with pure linear equations

• Set solver
– Efficient to simplify set based expressions

Proof algorithm
considering only proof requiring more than one step

• Have a look at the goal

• Search for related hypotheses

• Identify (nearly) applicable rules

• Identify missing information
– New hypothesis

– New simplification / resolution rule

• Add information

• One step ahead: try to simplify/solve

Application: DMS Sequencer
• Event-B model of an inertia central SW sequencer

• Used for SW validation

• 11 refinements

• 30% automatic proof only …

Model: dms00
Proof obligation: Swap.21

Swap.21

• Demonstrate that ∑t1 D(t1) = ∑t2 D’(t2)

• 17 local hypotheses

• 39 hypotheses (16 for typing)

• 250 « related » mathematical rules

• To help identifying missing bits,
holding guards are bold

Additions

• 23 rules added to the whole project

∑x P(E) = ∑y Q(F) if

- P(x)=Q(y) if x is replaced by y in P(x)

- E(x)=F(y) if x is replaced by y in E(x)

- x is free in Q and F, y is free in P and E

Validating rules for new domains

The resulting proof tree: 136 steps

Zoom on the proof tree

Split case

Rewrite

Rewrite

Prove

Prove

Prove

Prove

Prove

Apply lemma

Rewrite

Rewrite

Some metrics

Split case 2

Apply lemma 16

Rewrite 20

Prove 27

Sanitize 71

Application: ATP

• Automatic metro pilot (Beijing metro)

• Used for generating Ada software

• 127 components (model, refinement,
implementation)

• 65 000 proof obligations

• 98 % automatically proved (1300 to prove)

Model: uevol_loc_output_2_i
Proof obligation: iterateOnBlock.58

iterateOnBlock.58
« Size does matter »

• Demonstrate that locAbsExt$2 is
implementable 32-bit integer

• 34 local hypotheses

• 1380 hypotheses

• Anticipating thousands steps demonstration …

The proof tree
No need for zoom

Split case

Split case

Prove

Prove

Prove

Apply lemma

Prove

Some metrics

• Up to 2500 hypotheses in the middle of the
proof

• 1800 added rules

• 800 rules in the Patchprover (32%)

• 30 tactics and 200 demonstrations to
demonstrate the whole projet

Application: MPU

• Event B model of a smart card electronic
device

• Used for VHDL generation

• 18 levels of refinement

• 40% automatic proof

Model: mpu_017
Proof obligation: psi.1

To demonstrate that ea7$2 …. hmmmm …. points to the correct memory cell

Proof tree

Prove

Rewrite

Some metrics

• 20 tactics

• No added rule !

• 1 000 proof obligations in total

A real failure …

• ATP model including a constant representing clock
ticks over time (function: N 3 BOOL)

• Specified by its properties:

C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}

A real failure … (cntd)

• In B, constants needs to be non-miracle

• E.g: values should be given in implementation
and prove to comply with properties

• For this infinite function, we decided to go for an
admission rule and a paper demonstration

• I wrote the paper demonstration, cross-read by 2
other « experts »

A real failure … (the end)

• Exploit:
• add trivialhypothesis: C(m+124)= C(m+124)
• Replace C(m+124) by its values: TRUE = FALSE
• You can prove the project with this property

• Detected by independent assessor

C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}

Conclusion & remarks

• « why » is deeply related to « how »
• Guru/experts required for first shot at new (kind of)

modelling
• Transforming demos into tactics enables to save proof work
• When automatic proof fails, interactive proof almost

requires to disengage all proof mechanisms and use the
prover as a smart “calculette”

• Proof maintenance could be a nightmare
• Provers are almost stuck because of potential proof

regressions

