CLEARSY

SYSTEMS ENGINEERING

Formal methods and industry are not so often associated in the same sentence as the former
are not seen as an enabling technology but rather as difficult to apply and linked with
increased costs. In the 1990s, the introduction of the B method and the Event-B language
into several industrial development processes was witnessed with more or less success, even
if new tools and new practices were available to ease acceptance in industry. At that time, a
number of research projects and non-trivial industrial applications had backed these two
formal methods. Almost 10 years later, after several real size experiments in diverse
application domains, the situation has slightly evolved and this white paper intends to make
clear how the B method, the Event-B language and the Formal Data Validation have
contributed to a safer world.

The B Method

The B Method was introduced in the late 80's to correctly design safe software.
It is a formal method to develop software mathematically proved to comply
with its specification. It relies on a mathematical model of the software,
containing both what the software is expected to do and its algorithm.

The software model is decomposed into smaller models in order to manage
the complexity (“divide and conquer”).

The model is proved: the algorithm doesn’t contradict its specification.

The software code is generated from the implementation model. Code is
readable, very close to the model and is easily checked. The final software
application is made of parts developed with B and parts not developed
formally.

The main idea was to avoid introducing errors by proving the software while being built,
instead of trying to find errors with testing after the software was produced. Promoted and
supported by RATP!, B and Atelier B have been successfully applied to the industry of
transportation, through metros automatic pilots installed worldwide. Paris Meteor line 14
driverless metro is the one of the main reference applications with over 110,000 lines of B
models, translated into 86 000 lines of Ada. No bugs were detected after the proof was
completed, neither at the functional validation, at the integration validation, and at the on-
site testing, nor since the beginning of the metro line operation (October 1998). For years,
Alstom Transportation Systems and Siemens Transportation Systems (representing a major
part of the worldwide metro market) have been the two main actors in the development of B
safety-critical software. Both companies have a product based strategy and reuse as much
as possible existing B models for future metros. As an example, the Alstom Urbalis 400 CBTC
(Radio communication based train control) equips more than 100 metros in the world,
representing 1250 km of lines and 25 %? of the CBTC market.

! Paris metro authority
2 Source : http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/urbalis-400/

CLEARZX

For such applications including driverless metros, B modeling is used for safety critical
functions for both track-side (zone controller, interlocking) and on-board (automatic train pilot
or ATP) software. The interlocking part has to avoid having two trains on the same track
section. It computes Boolean equations that represent the tracks status as seen from diverse
sensors. The automatic pilot is mainly in charge of triggering the emergency brake in case
of over-speed. It requires several functions such as the localization that involve several graph-
based algorithms, and the energy control which computes the braking curve of the train,
based on the geometry of the tracks. Data types used are integer for the energy control,
Booleans for the interlocking and tables of integer for the tracks.

Figure 1: automatic driving metro subsystems, based on the B method, installed worldwide
(Alstom Urbalis, Siemens Mobility TraingGuard)

To date, the biggest B software is a XML compiler enabling the execution of safety critical
embedded applications by an interpreter. The B models generate more than 300,000 lines
of Ada code, for this SIL4 T3-compliant (EN50128) program. The method is not limited to
300,000-line software and has not met any bottleneck until now. Therefore, the method is
likely to scale up to larger, non-threaded software.

At the other end of the scale, with platform screen doors (PSD) or remote inputs/outputs
controllers, less demanding in term of computation, smaller applications are generated for
both programmable logic controllers (PLC) and PIC32 microcontrollers, with a maximum of
64 KB in memory per software. SIL3 and SIL4controllers, in charge of opening and closing
platform screen doors have been (or will be) installed in Paris (L1, L4, L13), Stockholm
(Citybanan) and Sao Paulo (L2, L3, L15 Monorail).

™
CLEARSY

This modelling approach is slightly specific but comes along many interesting features.

The “specification before code” motto imposes a top-down approach (or by-decomposition).
Software developers are encouraged to specify first, from natural language requirements. It
does not prevent to reuse existing software but avoids asking the dangerous question “what
do | get if | gather all these software components together?”

The target software is cyclic and single-threaded. No interrupt should modify the state
variables. Full integer arithmetic is supported (non-trivial floating-point arithmetic is
practically not provable) as well as Boolean predicates and equations (and arrays of integers
and Booleans).

The models are text-based. The same mathematical language (B) is used for the specification
model and the implementation model, based on set theory (ex: A < B) and predicate logic
(ex: P = Q). The model contains both the software properties (the static aspect) and its
behavior (the dynamic aspect). A proved model means that the specification is consistent (no
contradiction) and the implementation complies with its specification. A minima, the software
is proved to be programming error-free.

Dynamic aspect

Static aspect INITIALISATION

should establish

SETS

are referenced b INVARIANT

static properties
are consistent

Proof obligations

CONSTANTS

VARIABLES

should preserve

OPERATIONS

Figure 2: the relations between the B modelling elements

There are many reasons to use B for safety critical software development:

e |mproved level of confidence, brought by the mathematical formalism and the proof.
The use of B removes ambiguities as the mathematical model captures the meaning
of the software.

e Early error detection. Errors are discovered by proof during modelling and not by test
once the software is built.

e Most testing is useless. Proof replaces testing. Mathematical proof is exhaustive while
testing is not.

e Avoid redundant software development. For highest safety integrity level, only one B
model required, compared with two software developed more traditionally by two
independent teams.

e Accepted for certification. Several industrial standards recommend or strongly
recommend the use of formal methods (EN50128, IEC61508).

sequences execution queue. »

« Only inactive sequences can be added to the active

Natural language
requirement

activation_sequence = /* Activation d'une séguence non active */

PRE -(sequences = sequences_actives) THEN
ANY sequ WHERE
sequ € seguences
THEN

- seguences_actives

sequences_actives := sequences_actives U {sequ}

END
END;

activation_sequence = /* Activation d'une séguence non active */

VAR sequ IN
segu <-- indexSeguencelnactive;
activeSeguence (sequ)

END;

¢
CTX__SEQUENCES sequ:

- manager_ i Inactive (asequ)

void MO_ activation_sequence (void)
sequence manager__activeSequence (sequ):

0x01F970
0x01F980
0x01F950
0x01F9A0

83C6 0CBD 1485 0000 0000 8D42 0883

B Specification

B Implementation

| C generated code

l Automatic

| Binary code

FFFF 8B4C 2440 85CS 8D7D 0CE8B 4110 8S5CE
Fe07
7617 F7C7 0400 0000 740F 8B41 OCBD 7D10
B3C6 0489 450C 8D42 04FC 89Cl ClES 02F3

Automatic

Figure 3: the complete path from requirements to binary code.
The proof-by-construction principle applies to the green area (specification, implementation). Conformance
crosschecks (requirements and source code) require other means.

The Event-B Language

File Edit View Search Help

A9 X000

M0.sys

CONSTANTS
co, cl
PROPERTIES
C0 <: INTEGER & Cl <: CO
VARIABLES
interv
INVARIANT
interv <: C1
INITIALISATION
interv ::
EVENTS
add_element =
ANY v_ WHERE
v_ i Cl - interv
THEN
interv := interv \/ {v_}
END;
remove_element =
ANY v_ WHERE

POW (C1)

v_ i interv
THEN
interv := interv - {v_}
END
END v
development.

A broader use of B appeared in the mid 90s, called
Event-B, to analyze, to study and to specify not only
software, but also systems?. It extends the usage of B
to systems that might contain software, hardware and
equipment, environment, and also to intangible
objects like process, procedure, business rule, etc. In
that respect, one of the outcome of Event-B is the
proved definition of systems architecture in its
environment and, more generally, the proved
development of, so-called, “system studies", which
are performed at the beginning, before the
specification and design of the software. This
enlargement allows one to perform failure studies
right from the beginning, even in a large system

Event-B is used for formal modelling to progressively analyze and verify by proof a system-
level specification. It relies on a mathematical model of the system, containing both the

3 system is here considered in its widest definition

CLEARSY

properties of the system and its evolution rules. The evolution rules are encoded in the form
of a collection of asynchronous events that may be triggered based on conditions and may
modify the system state variables. The modelling is progressive as the model is made more
and more detailed, and complexity is added gradually. The top-level model is simplified
(abstracted) with few state variables modelled. Modelling details are added to successive
models (refinements). Events and properties have to be rewritten to consider these details.
For example, a train can be seen as a point moving on a line then can be refined by adding
details like the numbers of cars, the length of train, its breaking capability, the track slope,
etc.

“The model is proved” means that the evolution rules enforce the properties of the system.

Similarly, there are many reasons to use Event-B to model systems:

e Improved level of confidence. It is brought by the mathematical formalism and the
proof. It enables the assessment of complex specification (structure, behavior) in the
early stages. The model may be checked against scenarios. Finally, better software
specification are derived from this modelling.

e Ambiguities are removed. The mathematical model captures the meaning of the
system specification.

e FEasier test definition. The modelling allows defining which tests have to be performed
for subcomponents acceptance and before daily operation.

e Accepted for certification. Several industrial standards either recommend or strongly
recommend the use of formal methods (EN50128, IEC61508), or require the use of
formal methods (Common Criteria).

[Proparties proved | No collision
Assumptions \
Space from CBTC train
| Manual train assumptions r’// to MAL always free (and
- locked)

| Track portions calculated free by |
No false free track circuit " ZC are indeed free

Interlocking assumptions

No manual train shorter

o No fake message, real
than minimum

transmission delay shorter than

Interlocking & context estimated one.
Actual train posltlon within the | CBTC trains never reach MALs
estimated image
/1 AN /
Real train motion within limits Transponder detection: no fake

of estimated train motion | ID, no detection outside limits Actual track grades
’ | within database limits |

i

All slipping denoted by acceleration Guaranteed worst
change <specific conditions...> brake force

ONBOARD

Figure 4: NYCT line 7 modernization project - the structure of the formal proof for the main safety
properties of the system: no collision and no over-speeding. Event-B/Atelier B was used to support the
mathematical demonstration.

CLEARSY

Event-B is used in a number of safety cases. The fundamental goal is to extract the rigorous
reasoning establishing that the considered system ensures its requested properties and is
safe, and to assert that this reasoning is correct and fully expressed. At system level, this
rigorous reasoning involves the properties of different kind of subsystems (from computer
subsystems to operational procedures), that the formal proof shall all encompass. Event-B is
used to formalize the reasoning with a collection of separate models: each model is readable
and understandable by a non-expert and does not require to dig into hundreds of events and
tens of refinement levels. This approach was used for the system formal verification for the
CBTC of New York subway line 7 in 2012 and Flushing in 2014 (effort divided by two due to
models reuse). It was also deployed by the SNCF to design a new signaling system, based
on a degraded version of ERTMS, aimed at low-traffic, regional lines. At this moment, RATP
is making use of it for the system formal verification for the CBTC of Paris subway line 4.

Atelier B

Atelier B is the reference tool from ClearSy, freely available and fully
functional:

e for the development of (safety critical) software . It supports the

B method and the B language.

e for the modelling of systems. It supports the Event-B language.
It includes several model editors, proof tools and code generators. It
has been used for certified applications up to SIL4 (EN50128) in the
railways and EAL6+ (Common Criteria 3.1) in the smartcard industry.
A dedicated support (more frequent Atelier B releases, privileged
access to beta features for evaluation, short-term bug correction) is
provided for maintenance contract holders. ClearSy also proposes
courses and services to help its customers.

[

Controler (Paris L3) compiler

inB

2
g’ suj rt
H
i
igein
Automatic refiner iaati
proof obligation Functional
generator modelling
v
generic C HEX binary
code generator code generator
v w
I 1994 I 1995 I 1996 I 1997 I 1998 I 1999 I 2000 I 2001 I 2002 I 2003 I 2004 I 2005 I 2006 I 2007 I 2008 I 2009 I 2010 I 2011 I 2012 I 2013 I 2014 I 2015 I 2016 I 2017 I 2018 I
I | T 1] | |
[} I .
c _ - First EALS5+(CC 2.3) First symbolic First safety assessement First certified
.g First melroautor.nal\c pilot smartcard certificate calculus engine in Event-B (New York L7) application
I3 METEOR (Paris L14) inB I running on low
i First Platform screen door First (xml) cost PIC32
(o
<

4.5

43 44 50
L]

3.2 3.6 3.7 4.0 41 42

"/ Windows
Linux
ATELIER ! Macos
7
e 2

Figure 5: Atelier B timeline showing the major improvements (in green) and the first new kinds of
applications (in red), since its infancy.

Sun
HP
Linux

ATELIER

Formal Data Validation

In the railways, software are usually developed and validated independently from the
parameters or constant data that fine-tune its behavior. For example, the track topology,
signal and switch positions, kilometer points, etc. are constant data used by an automatic
pilot to compute breaking curves and to determine when to trigger the emergency breaking.
In order to avoid a new compilation if the data are modified but not the software, two different
processes define the software and the data validations.

Customer verification rules

or
Data generation principles
Formal
Verification
Tool
all data
respect
all rules
rules
output | of
data {"’]

Figure 6: Formal data validation scheme

Data validation consists in checking a heterogeneous data collection* against a set of
properties / rules® issued from regulation, exploitation constraints, train manufacturer product
design, etc. Manual data validation used to be entirely human, leading to painful, error-prone,
long-term activities (requiring several months to check manually up to 100,000 items of data
against 1,000 properties / rules).

- | Formal data validation is the natural evolution of this
human-based process into a more secure one

o1 where:

e the properties / rules are formalized, to
constitute a formal data model
(mathematical, based on the B language). It
is built from natural language inputs.

¢ the verification of conformance between the
data collection and the formal data model is

cowered by B performed by a formal tool (or by a

combination of redundant formal tool if
required)

SECURE data

Lrcpor o +
DATA VALIDATION %@ ™!

Property Steps
Project 15 DTVTR v16.1/AL+10/Rule DB_RIQ_0006.xm! Rule_DB_RIO_0006

uuuuuuu
16 DIVTR161/AL+10/Rule DB ROUTE 0002xml Rule DB Route 0002

nnnnnnn

17 DTVTRv16.1/AL+10/Rule_DB_ROUTE_0003.xm! Rule_DB_Route 0003

18 DTVTRv16.1/AL+10/Rule DB_SIGAREA 000Lxml Rule_DB_SIGAREA 0001

19 DTVTRv16.1/AL+10/RCD_Track_Container_000Lxmi Rule_RCD_Track_Container 0001

20 DTVTR vl 6.1/AL-10/RuleCBTC_SPEEDamI Rule_CBTC_SPEED

21 DTVTR A 61/AL+10/Rule Test Track SPEEDxml Rule_Test_Track_SPEED

CR QLR K
<X LR gl

22 DTVTR_v1.6.1/AL+10/Rule BSR_SPEEDxmml Rule_BSR_SPEED

4 CBTC or ETCS configuration data, IXL or RBC parameters, etc.
5 For example, “successive track circuits should have continuously increasing kilometer points”, “there exists a
path between two distinct track circuits”, “signals should be positioned a minima 100 meters before the switch

they protect”, etc.

This approach has been invented by ClearSy, thanks to its deep knowledge and skills on
formal method technology and associated tools.
The benefit of this formal approach is diverse:

e |tisfast: up to 10x faster than a pure human verification, a couple of hours is enough

for validating a complete railway project

e |t is automatic, push-button and repeatable at will

e |t removes human errors, as it makes use of certified formal techniques

e |t allows a strong reuse from one project to another (capitalization of the knowledge)

Formal data validation is industry ready. Several major players currently have deployed it,
such as:

e Alstom — more than 20 metros (Urbalis) and tramways

e General electric — for the Singapore metro

e RATP (Paris metro authority)

e SNCF (French Railways) — for checking the interlocking tables on the main lines
(Mistral NG)
Siemens Mobility — for metros (Trainguard)
e Thales

Bibliography

- Benveniste, M.V.: On using B in the design of secure micro-controllers: An experience
report. Electr. Notes Theor. Comput. Sci. 280 (2011)

- Hansen, D., Schneider, D., Leuschel, M.: Using B and prob for data validation projects.
In: Abstract State Machines, Alloy, B, TLA, VDM, and Z - 5th Int'l Conf., ABZ 2016,
Linz, Austria, May 23-27, 2016

- Lecomte, T.: Safe and reliable metro platform screen doors control/command
systems. In: FM 2008: Formal Methods,15th Int'l Symposium on Formal Methods,
Turku, Finland, May 26-30, 2008

- Lecomte, T.: Applying a formal method in industry: A 15-year trajectory. In: Formal
Methods for Industrial Critical Systems, 14th Int'l Workshop, FMICS 2009, Eindhoven,
The Netherlands, November 2-3, 2009

- Lecomte, T.: Double coeur et preuve formelle pour automatismes sil4. 8E-Modéles
formels/preuves formelles-sdreté du logiciel (2016)

- Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012)

- Sabatier, D.: Using formal proof and B method at system level for industrial projects.
In: Reliability, Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification - 1st Int'l Conf., RSSRail 2016, Paris, France, June 28-
30, 2016

CLEARSY

provide a real support for successfully completing safety demo

In this white paper, we show that several formal methods (B, Eve
directly contribute to safety critical software development, syste

Based in Aix en Provence, Lyon, Paris and in Strasbourg, ClearSy is a French SME company, which specializes
in developing SIL1 to SIL4 level safety systems and software. It develops complex systems, from their design to
putting them into service, and undertakes the interim stages of validation, checking and safety testing. ClearSy
is particularly active in the development of systems and software in the railway, car, military, nuclear energy and
space industries.

http.//www.clearsy.com/en/ \
] Y

http://www.fersil-railway.com/en/

http://www.atelierb.eu/en/

CLEARSY

SYSTEMS ENGINEERING

http://www.clearsy.com/en/
http://www.fersil-railway.com/en/
http://www.atelierb.eu/en/

