
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FORMAL ANALYSIS OF 
SOFTWARE 

CLEARSY TECHNICAL OFFER 
FORMAL ANALYSIS OF SOFTWARE 

 
CONTACT@CLEARSY.COM 

 
 



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

FORMAL ANALYSIS OF SOFTWARE 
 
CLEARSY proposes a new innovative analysis approach to establish with mathematical proof 
that all or part of a software are compliant with respect to a functional or a safety requirement. 
 
This approach establishes a direct formal link between the source code of the software and 
the properties of the system that integrates that software. It is now possible to detect any kind 
of noncompliance that may have been introduced in the design phase: from the identification 
of algorithms during the system definition phase, up to their concrete realization, taking into 
account possible implementation specific constraints. 
 
This approach is particularly suitable when 
the traditional verification and validation 
activities show to be lacking:  
 

• Scenario-based verification is 

possibly incomplete for systems 

having too many states. 

 

• Bugs are discovered late in the 

development cycle, especially when 

they stem from errors from the system 

design. 

 
In comparison, the formal analysis approach 
proposed by CLEARSY is complete: it is 
guaranteed to cover all possible functional behaviors, including as a matter of fact all system 
dysfunctions and failures that have not explicitly been discarded. This is the benefit of using a 
method based on mathematics and a property-based approach, instead of a case-by-case 
approach.  
 
This approach may be applied retroactively on an existing software. Moreover, it is all the 
more benefitting to apply it systematically in the industrial process, so that the analysis is 
moved upstream the development. Errors are detected at the earliest, the correction steps 
and the tests to replay being reduced to the minimum.  
 
The benefits of such a formal analysis numerous:  

• To consolidate and lay down the functional and safety requirements: to state 

explicitly what guarantees the system shall enforce.  

• To identify noncompliant behaviors: violations of properties that may have deep 

consequences on the safety or on the operation of the system integrating the 

software under analysis. 

• Recover initial reasonings: the original intentions of the system designers. 

• Lay down design choices: by finding their justification, thus providing a guarantee 

that the software under analysis is technically mastered. 

• Uncover useless or obsolete complexity nodes: to simplify the software for 

improved performance and functional features (the simpler the software, the larger 

the possibility to be well-behaved). 

 

F
O

R
M

A
L

 A
N

A
L

Y
S

IS
 O

F
 S

O
F

T
W

A
R

E
 

 

Figure 1. The activity in the workflow. 



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

INDUSTRAL INTEREST 
 
This method is pragmatic, quickly providing concrete results for the project. With the results 
obtained from previous applications, CLEARSY has reached the conclusion that the formal 
analysis of software presents a real gain both for the supplier of a product and its operator. 
The approach benefits from being used on products that evolve over time, or that are widely 
deployed, or that integrate options based on their use. 
 

For a supplier: 
 
The company in charge of the product development will find its interest in having a more robust 
product and thus avoiding serious problems during exploitation, to ensure maintainability (of 
the knowledge and of the explicit reasons underlying choices and needs), and to guarantee 
the skills are transmitted. This approach also provides significant material to build the safety 
case for the product.   
 
Moreover, it will be able to take advantage of the experience of applying this approach to 
generalize its deployment and thus create an alternative to the traditional design and 
verification cycle based on scenario analysis (an analysis without any guarantee regarding 
completeness, of course).  
 

For an operator: 
 
The operator, in the event of non-compliance, and therefore a problem with the operation, is 
also liable, has a strong motivation to apply this method. 
 
Indeed, CLEARSY offers to conduct an analysis of the deliverables of the supplier of the 
operator. The benefits are to improve the technical mastery of the product and to obtain a 
systematic, safe and tooled methodology to validate mathematically the conformity of the 
software with respect to the needs for operation and safety. 
 
Above all, it avoids the occurrence of problems during operation, which can be all the 
more serious if they affect safety and have serious consequences: operation is interrupted, 
financial penalties might be incurred, the public image of the operator is damaged, a conflict 
with the supplier. 
Multi-supplier systems (interoperable systems) are a particularly relevant target for this 
type of approach. Indeed, the share of responsibilities between the various subsystems 
integrating software is all the more important. In case of incident, each supplier defends that 
its product is not incriminated. The proposed approach produces a mathematical evidence that 
the composition of the subsystems meets the system-level requirements. 
 
 

TECHNICAL OVERVIEW 
 
The method is based on an analysis based on properties that must be preserved. The main 
system requirement is decomposed down to a level of detail where the software variables are 
directly involved. 
 
This method of analysis provides a modular and layered view of the software and the 
manipulated entities. Each software variable contributing to fulfill the requirement is identified. 
The role of these variables in the demonstration of compliance is clearly conveyed by 
properties linking each such software variable to real / physical / concrete elements interacting 



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

with the software. The reasoning establishing the compliance to the main requirement consists 
in finding a proof that the main requirement is a logical consequence of the properties. 
 
The method demands also that all possible evolutions of the different physical and logical 
(software) elements be analyzed to verify that these evolutions preserve these properties. This 
constitutes the evidence that the system main requirement holds in every possible execution 
scenario, including breakdowns and dysfunctions. 
 
 

ILLUSTRATION 
 
Take the case of a safety-critical software in charge of issuing an authorization to open the 
doors of an automatic metro train. 
 
The functional conditions to authorize opening can be many: train correctly positioned along 
the platform, fully stopped, servicing the platform in question, ongoing emergency opening 
request, etc. 
 
Nevertheless, one thing is clear, the authorization to open the doors shall never be granted 
while the subway train is moving. This statement corresponds to the expression of a 
requirement, in this case a safety requirement. In this example, it is the main requirement. This 
property must always be true, we speak of invariant property. 
 
To realize this, the software is based on more or less complex algorithms to estimate the train 
speed. This estimation can only be an approximation of the actual speed, guaranteed to a 
close delta. We see immediately that, to guarantee the main requirement, this algorithm should 
tend to overestimate the actual speed. Otherwise, it could conclude that the subway train is at 
a standstill when in fact it is in motion (non-zero speed), which could result in issuing a faulty 
authorization to open the doors. 
 
Suppose now that the algorithms implemented to obtain this estimate are based on sensors 
capable of finely analyzing the rotational speed of the wheels (or axles). This information is 
useful for determining an overall speed of movement but it is not sufficient. In fact, one must 
also consider a sliding movement (obtained without rotation of the wheels). Otherwise we could 
wrongly conclude that a rolling stock whose wheels are not rotating is at a standstill while in 
fact it is still in motion, and enable an erroneous authorization to open doors. 
 
 
So, the software component under design will integrate somehow the following modules: 

• estimate of a rotational speed, say 𝑣𝑟𝑜𝑡𝑠𝑤, 

• estimate of a slipping speed, say 𝑣𝑠𝑙𝑖𝑝𝑠𝑤, 

• computation of a global train speed, say 𝑣𝑠𝑤, from the previous speeds.  

 
This constitutes what we previously called a layered view of the software: 𝑣𝑟𝑜𝑡𝑠𝑤, and 𝑣𝑠𝑙𝑖𝑝𝑠𝑤 
are lower-level entities used to determine the higher-level information 𝑣𝑠𝑤. 
 

 
 
 



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

 
Figure 2 – Example: layered, modular view of the software and of the properties to be guaranteed. 

 
TOOLS 
 
CLEARSY proposes to support this approach with a tool capable of supporting system 
modeling and formal proof of properties. The "Event-B " modeling deployed via the Atelier B 
industrial tool fulfills these characteristics and has been used in CLEARSY's reference projects 
in the field. 
 
Nevertheless, the method is not tool-specific. CLEARSY has already conducted some 
analyses by using other tools, the motivation being to employ tools already used by the client, 
thus facilitating the interaction and the subsequent adoption of the approach by this client. 
 
The interest of supporting the process with a tool is manifold: 

• Ensures that the invariant properties of the software are expressed with the 

appropriate level of detail and accuracy. 

• Ensures there is no logical fault in pen and paper proof so that a demonstration 

of compliance is achieved, supported by a certified tool. 

• Finds implicit hypothesis used in the reasoning and make them explicit: Atelier 

B, or other similar tools, has no built-in domain specific knowledge. 

  



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

SYNTHESIS 
 
The diagram below presents in a synthetic way the different steps described above to obtain 
the formal proof that a software is compliant with respect to a requirement. 
 

 
Figure 3 – Synthesis 

 
INPUTS 
 
The team in charge of conducting the analysis needs the following two key elements: 
 

• The main requirement, that against which one seeks to evaluate the conformity of 
the algorithms implemented. In general, it is a set of properties resulting from the 
analysis of the catastrophic events but it can also be a functional property, unrelated to 
safety objectives. 

 
• A faithful representation of the software code implementing this feature: the 
software specification, an abstract model of the code if it has been developed using 
formal methods (B-software for example), or directly the code itself. 

 
In practice, the analysis is achieved more efficiently if the team has a channel for on-demand 
meetings with a professional familiar with the software and more specifically with the feature 
under study. 
  



 

 

SAFETY SOLUTIONS DESIGNER 

FORMAL ANALYSIS OF SOFTWARE 

 

WW.CLEARSY.COM 

contact@clearsy.com 

 

 

 

DELIVERABLES 
 
The deliverables of a formal analysis of software are a collection of documents containing: 

• The precise scope of the study, 

• The hypotheses made on the inputs of the analyzed function (incoming 

messages, sensors, results from another function, etc.), 

• The properties expressing the functional and safety requirement involving the 

software variables, 

• The proof of compliance to the main requirement, 

• Any possible noncompliant situations as well as the elements necessary to 

conduct their assessment. 

 
Also delivered are the formal models developed with Atelier B (or any other tool chosen for the 
delivery). These models can be maintained and used to evaluate possible software evolutions 
by integrating them in the models even before starting the software design cycle. 
 
These models and the accompanying proof guarantee mathematically the soundness 
and completeness of the conducted reasoning. 

 
COMMERCIAL 
REFERENCES 

 
 
 
 
 
 

This approach has already been applied to safety-critical software qualified SIL4 according to 
the CENELEC - EN 50128 standard: a railway product with more than 12kloc and a 100-pages 
software specification. In terms of volume, the conducted analysis required globally 1.5 man-
year to experts. The project quickly delivered results and steadily delivered output to the 
customer all along the project. 
 
A similar approach has also been applied in the automotive domain for the validation of 
embedded software responsible to manage an anti-theft device mounted on the steering 
column of motorized vehicle. Another similar study was conducted in the micro-electronics 
domain, to demonstrate the compliance of smart card specifications with the level 5+ of the 
Common Criteria standard (used for computer security certification). 
 
CLEARSY has also experience for inter-system analysis of complex SIL4 applications applying 
a formal approach. This kind of analysis aims to build a demonstration that the global safety of 
the system is guaranteed, assuming that each sub-system guarantees a set of desired 
properties (and this can be the subject of a formal analysis of software as presented in this 
document). Such approach has been conducted to prove formally the absence of collision and 
of derailment of trains from a set of inter-system specification documents (assuming that each 
supplier correctly implements such specifications) for the following CBTCs: New York line 7, 
RATP (Octys), and the ERTMS system for SNCF. 

Our customers are 
big companies and 
prime contractors in 
the railway market. 
 
 



 

  
 
 
 

320 AVENUE ARCHIMEDE  
LES PLEIADES III BAT A 
13100 AIX-EN-PROVENCE - FRANCE 

TEL. +33 (0)4 42 37 12 70 FAX. +33 (0)4 42 37 12 71  

WEB. contact@CLEARSY.com 

WWW.CLEARSY.COM  

 

 

 

 
 
          
 

F
O

R
M

A
L

 A
N

A
L

Y
S

IS
 O

F
 S

O
F

T
W

A
R

E
 

 

O
F

F
E

R
 

2
0

2
1
 


