

WHITE PAPER Novembe r 2021

FORMAL METHODS IN ACTION

IN THE RAILWAYS

Formal methods and industry are not so often associated in the same sentence as the former are
not seen as an enabling technology but rather as difficult to apply and linked with increased costs.
In the 1990s, the introduction of the B method and the Event -B language into several industrial
development processes was witnes sed with more or less success, when new tools and new
practices were available to ease acceptance by industry. At that time, a number of research
projects and non -trivial industrial applications had backed these two formal methods. Almost 10
years later, a fter several real size experiments in diverse application domains, the situation has
slightly evolved and this white paper intends to make clear how the B method, the Event -B
language and the Formal Data Validation have contributed to a safer world.

The B Method

The B Method was introduced in the late 80's to correctly design safe software.
It is a formal method to develop software mathematically prove n to comply with
its specification. It relies on a mathematical model of the software, containing both
what the software is expected to do and its algorithm.
The software model is decomposed into smaller models in order to manage the
complexity (òdivide and conqueró).
The model is proved : the algorithm doesnõt contradict its specification.
The software code is generated from the implementation model. Code is readable,
very close to the model and is easily checked. The final software application is
made of parts developed with B and parts not developed formally.

The main idea was to avoid introducing er rors by proving the software while being built, instead
of trying to find errors with testing after the software was produced. Promoted and supported by
RATP1, B and Atelier B have been successfully applied to the industry of transportation, through
metros automatic pilots installed worldwide. Paris Meteor line 14 driverless metro is one of the
main reference applications with over 110,000 lines of B models, translated into 86 000 lines of
Ada. No bugs were detected after the proof was completed, neither at the functional validation,
at the integration validation, and at the on -site testing, nor since the beginning of the metro line
operation (October 1998). For years, Alstom Transportation Systems and Siemens Transportation
Systems (representing a major par t of the worldwide metro market) have been the two main
industrial play ers in the development of safety -critical B software. Both companies have a product
based strategy and reuse as much as possible existing B models for future metros. As an example,
the Alstom Urbalis 400 CBTC (Radio communication based train control) equips more than 100
metros in the world, representing 1250 km of lines and 25 % 2 of the CBTC market.

For such applications including driverless metros, B modelling is used for safety criti cal functions
for both trackside (zone controller, interlocking) and on -board (automatic train pilot or ATP)
software. The interlocking part has to avoid having two trains on the same track section. It
computes Boolean equations that represent the tracks s tatus as seen from diverse sensors. The
automatic pilot is mainly in charge of triggering the emergency brake in case of over -speed. It
requires several functions such as the localisation that involve several graph -based algorithms,
and the energy control which computes the braking curve of the train, based on the geometry of
the tracks. Data types used are integer for the energy control, Booleans for the interlocking and
tables of integer s for the tracks.

1 Paris metro authority
2 Source : http://www.alstom.com/products-services/product-catalogue/rail-systems/signalling/products/urbalis-400/

Figure 1: automatic driving metro subsystems, based on the B method, installed worldwide
(Alstom Urbalis, Siemens Mobility Trainguard)

To date, the biggest B software is a n XML compiler enabling the execution of safety critical
embedded applications by an interpreter. The B models generate more than 300,000 lines of Ada
code, for this SIL4 T3 -compliant (EN50128) program. The method is not limited to 300,000 -line s
of software code and has not met any bottleneck until now. Therefore, the method is likely t o
scale up to larger, non -threaded software.

At the other end of the scale, with platform screen doors (PSD) or remote inputs/outputs
controllers, less demanding in terms of computation, smaller applications are generated for both
programmable logic cont rollers (PLC) and PIC32 microcontrollers, with a maximum of 64 KB in
memory per software. SIL3 and SIL4 controllers, in charge of opening and closing platform screen
doors have been (or will be) installed in Paris (L1, L4, L13), Stockholm (Citybanan) and S ao Paulo
(L2, L3, L15 Monorail).

Figure 2: the relations between the B modelling elements

This modelling approach is slightly specific but comes along many other interesting features.
The òspecification before codeó motto imposes a top-to -bottom approach (or by decomposition).
Software developers are encouraged to specify first, from natural language requirements. It does
not prevent reuse of existing software but avoids asking the dangerous question òwhat do I get if
I gather all these software c omponents together?ó

The target software is cyclic and mono -threaded. No interrupt should modify the state variables.
Full integer arithmetic is supported (non -trivial floating -point arithmetic is practically not
provable) as well as Boolean predicates and equations (and arrays of integers and Booleans).
The models are text -based. The same mathematical language (B) is used for the specification
model and the implementation mode l, based on the set theory and predicate logic . The model
contains both the so ftware properties (the static aspect) and its behavior (the dynamic aspect). A
proved model means that the specification is consistent (no contradiction) and the
implementation complies with its specification. A minima , the software is proved to be
programming error -free.

There are many reasons to use B for safety critical software development:

¶ Improved level of confidence , brought by the mathematical formalism and the proof. The
use of B removes ambiguities as the mathematical model captures the me aning of the
software.

¶ Early error detection . Errors are discovered by proof during the modelling and not by test
once the software is built.

¶ Most testing is useless . Proof replaces testing. Mathematical proof is exhaustive while
testing is not.

¶ Avoid redu ndant software development . For highest safety integrity level, only one B
model is required, compared with two software applications developed more traditionally
by two independent teams.

¶ Accepted for certification . Several industrial standards recommend or strongly
recommend the use of formal methods (EN50128, IEC61508).

Figure 3: the complete path from requirements to binary code.

The proof -by-construction principle applies to the green area (specification, implementation). Conformance
crosschecks (requirements and source code) require other means.

The Event -B Language

A broader use of B appeared in the mid `90s, called Event -

B, to analyse, to study and to specify not only software,

but also systems 3. It extends the usage of B to systems that

may contain software, hardware and equipment,

environment, and also to intangible objects like process,

procedure, business rule, etc. In that respect, one of the

outcomes of Event -B is the proved definition of systems

architecture in t heir environmen t and, more generally, the

proved development of, so -called, òsystem studies", which

are performed at the beginning, before the specification

and design of the software. This enlargement allows to

perform failure studies right from the beginning, even in

a large system development.

Event -B is used for formal modelling to progressively analyse and verify by proof system -level

specification s. It relies on a mathematical model of the system, containing both the properties of

the system and its evolution rul es. The evolution rules are encoded in the form of a collection of

asynchronous events that may be triggered based on conditions and may modify the system state

variables. The modelling is progressive as the model is made more and more detailed, and

comple xity is added gradually. The top -level model is simplified (abstracted) with few state

variables modelled. Modelling details are added to successive models (refinements). Events and

properties have to be rewritten to consider these details. For example, a train can be seen as a

point moving on a line then can be refined by adding details like the number of cars, the length

of train, its braking capability, the trac tion model , etc.

òThe model is provedó means that the evolution rules enforce the properties of the system.

Similarly, there are many reasons to use Event -B to model systems:

¶ Improved level of confidence. It is brought by the mathematical formalism and the proof.
It enables the assessment of complex specification (structure, behaviour) in the early
stages. The model may be checked against scenarios. Finally, better software specifications
are derived from this modelling.

¶ Ambiguities are removed. The mathematical model captures the meaning of the system
specification.

¶ Easier test definition. The mod elling allows defining which tests have to be performed for
subcomponents acceptance and before daily operation.

¶ Accepted for certification. Several industrial standards either recommend or strongly
recommend the use of formal methods (EN50128, IEC61508), or require the use of formal
methods (Common Criteria).

3 system is here considered in its widest definition

Figure 4: NYCT line 7 modernisation project - the structure of the formal proof for the main safety
properties of the system: no collision and no over -speeding. Event -B/Atelier B was used to support the

mathematical demonstration.

Event -B is used in a number of safety cases. The fundamental goal is to extract the rigorous
reasoning establishing that the considered system ensures its requested properties and is safe,
and to assert that this reasoning is correct and fully expressed. A t system level, this rigorous
reasoning involves the properties of different kind of subsystems (from computer subsystems to
operational procedures), that the formal proof shall all encompass. Event -B is used to formalise
the reasoning with a collection of separate models: each model is readable and understandable
by a non -expert without digging into hundreds of events and tens of refinement levels. This
approach was used for the formal system verification for the CBTC of New York subway line 7 in
2012 and Flushing in 2014 (effort divided by two due to models reuse). It was also deployed by
SNCF to design a new signalling system, based on a degraded version of ERTMS, aimed at low -
traffic, regional lines. At this moment, RATP is making use of it for the forma l system verification
of the CBTC of Paris subway line 4.

The formal software analysis

CLEARSY proposes a new innovative analysis approach to establish with mathematical proof that

all or part of a software is compliant with respect to a functional or a safety requirement.

This approach establishes a direct formal link between the source co de of the software and the

properties of the system that integrates that software. It is now possible to detect any kind of

noncompliance that may have been introduced in the design phase: from the identification of

algorithms during the system definition phase, up to their concrete realization, taking into

account possible implementation specific constraints.

This approach is particularly suitable when the

traditional verification and validation activities

show to be lacking:

ω Scenario -based verification is possibly

incomplete for systems having too

many states.

ω Bugs are discovered late in the

development cycle, especially when

they stem from errors from the system

design.

In comparison, the formal analysis approach proposed by CLEARSY is complete: it is guaranteed

to cover all possible functional behaviors, including as a matter of fact all system dysfunctions

and failures that have not explicitly been discarded. This is the benefit of using a method based

on mathematics and a property -based approach, instead of a case -by-case approach.

To do so, the formal software analysis method consist in building an event -b model in which

both physical and software elements are described and every change of state is modelled as an

event of the b model:

ω Software var iables: every possible transition is described by the software specification.

ω Physical elements: it requires to model its possible behavior.

The expected property is expressed as an invariant of the model and the formal proof of

compliance is obtained usi ng inductive reasoning:

¶ The initial state should be compliant to the invariant.

¶ Then, every possible transition (which means every event in the b model) shall ensure that

it will not break the expected property.

¶ Figure 5: Event -B modelization and proof process

Atelier B

Atelier B is the reference tool from CLEARSY, freely available and fully
functional:

¶ for the development of (safety critical) software. It supports the B
method and the B language.

¶ for the modelling of systems. It supports the Event -B language.
It includes several model editors, proof tools and code generators. It has
been used for certified applications up to SIL4 (EN50128) in the railways
and EAL6+ (Common Criteria 3.1) in the smartcard industry.
A dedicated support (more frequent Atelier B releases, privileged access to
beta features for evaluation, short -term bug correction) is provided for
maintenance contract holders. CLEARSY also proposes training courses and
services to support its customers.

Figure 6: Atelier B timeline showing the major improvements (in green) and the first new kinds of

applications (in red), since its creation .

Formal Data Validation

In the railways, software applications are usually developed and validated independently from
the parameters or constant data that fine -tune their behaviour. For example, the track topology,
signal and point positions, kilometer points, etc. are constant d ata used by an automatic pilot to
compute braking curves and to determine when to trigger the emergency brak e. In order to avoid
a new compilation if the data are modified but not the software, two different processes define
the software and the data validations.

Figure 7: Formal data

validation scheme

Data validation consists of checking an heteroge neous data collection 4 against a set of properties
/ rules 5 issued from regulation, exploitation constraints, train manufacturer product design, etc.
Manual data validation used to be entirely human, leading to painful, error -prone, long -term
activities (requiring several months to check manually up to 100,000 ite ms of data against 1,000
properties / rules).

Formal data validation is the natural
evolution of this human -based process
into a more secure one where:

¶ the properties / rules are formalised,
to constitute a formal data model
(mathematical, based on the B language). It
is built from natural language inputs.

¶ the verification of conformance
between the data collection and the formal
data model is performed by a formal tool
(or by a combination of redundant formal
tools if required)

This approach has been invented by CLEARSY, thanks to its deep knowledge and skills on formal
method technology and associated tools.
The benefit of this formal approach is diverse:

¶ It is fast : up to 10x faster than a pure human verification, a couple of hours is enough for
validating a complete railway project

¶ It is automatic , push -button and repeatable at will
¶ It removes human errors , as it makes use of certified formal techniques

¶ It allows a strong reuse from one project to another (capitalisation of the knowledge)

Formal data validation is industry ready. Several major players currently have deployed it like:

¶ Alstom ð more than 20 metros (Urbalis) and tramways

¶ General Electric ð for the Singapor e underground
¶ RATP (Paris metro authority) ð several metros in Paris

¶ SNCF (French Railways) ð for checking the interlocking tables on the main lines (Mistral
NG) and for checking balise data on ERTMS freight corridors

¶ Siemens Mobility ð for metros (Trainguard)
¶ Thales ð for metros

4 CBTC or ETCS configuration data, IXL or RBC parameters, etc.
5 CƻǊ ŜȄŀƳǇƭŜΣ άǎǳŎŎŜǎǎƛǾŜ ǘǊŀŎƪ ŎƛǊŎǳƛǘǎ ǎƘƻǳƭŘ ƘŀǾŜ Ŏƻƴǘƛƴǳƻǳǎƭȅ ƛƴŎǊŜŀǎƛƴƎ ƪƛƭƻƳŜǘŜǊ ǇƻƛƴǘǎέΣ άǘƘŜǊŜ ŜȄƛǎǘǎ ŀ ǇŀǘƘ
between two distinct trŀŎƪ ŎƛǊŎǳƛǘǎέΣ άǎƛƎƴŀƭǎ ǎƘƻǳƭŘ ōŜ ǇƻǎƛǘƛƻƴŜŘ ŀ ƳƛƴƛƳǳƳ млл ƳŜǘers before the point they
ǇǊƻǘŜŎǘέΣ ŜǘŎΦ

CLEARSY Safety Platform

The CLEARSY Safety Platform is aimed at easing the development and the deployment of safety

critical applications, up to SIL4. It relies on the smart integration of formal methods, redundant

code generation and compilation, and a hardware platfor m that ensures a safe execution of the

software.

The CLEARSY Safety Platform is made of an integrated software development environment (IDE)

and a hardware platform that natively integrates safety principles. Hence the developer has only

to focus on the fu nctional design while mathematical proof replaces unit and integration testing.

There is no need for independent software development teams: redundant software is

automatically produced from a single model.

Provided with a certification kit, the CLEARSY Sa fety Platform obviously lowers the cost to

develop, certify and deploy a safety critical application. The hardware platform is available either

as a starter kit or as a daughter board to be integrated into in -house developments.

 òThe safety principles are out of reach of the developer who cannot

alter themó

The safety principles are built -in, both at software level and at hardware level (2OO2 hardware,

4OO4 software).

The functional correctness is ensured by mathematical

proof. The detection of any divergent behaviour among the

two processors and the four instances of the software is

handled by the pl atform. The safety verification include

cross checks between software instances and between

microcontrollers, memory integrity, microcontroller ins truction checker, etc.

Figure 8: Development and deployment

